• 제목/요약/키워드: Flat fading

Search Result 87, Processing Time 0.022 seconds

Performance of pilot-assisted coded-OFDM-CDMA using low-density parity-check coding in Rayleigh fading channels (레일리 페이딩 채널에서 파일럿 기법과 LDPC 코딩이 적용된 COFDM-CDMA의 성능 분석)

  • 안영신;최재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.532-538
    • /
    • 2003
  • In this paper we have investigated a novel approach applying low-density parity-check coding to a COFDM-CDMA system, which operates in a multi-path fading mobile channel. Developed as a linear-block channel coder, the LDPC code is known for a superior signal reception capability in AWGN and/or flat fading channels with respect to increased encoding rates, however, its performance degrades when the communication channel becomes multi-path fading. For a typical multi-path fading mobile channel with a SNR of 16㏈ or lower. in order to obtain a BER lower than 1 out of 10000, the LDPC code with encoding rates below 1:3 requires not only the inherent parity check information but also the piloting information for refreshing front-end equalizer taps of COFDM-CDMA, periodically. For instance, while the 1:3-rate LDPC coded transmission symbol is consisted of data bits and parity-check bits in 1 to 3 proportion, on the other hand, in the proposed method the same rate LDPC transmission symbol contains data bits, parity check bits, and pilot bits in 1 to 2 to 1 proportion, respectively. The included pilot bits are effective not only for channel estimation and channel equalization but for symbol decoding by assisting the parity-check bits, hence, improving SNR vs BER performance over the conventional 1:3-rate LDPC code. The proposed system performance has been verified using computer simulations in multi-path, Rayleigh fading channels, and the results show us that the proposed method out-performs the general LDPC channel coding methods in terms of SNR vs BER measurements.

Generalized Sub-optimum Decoding for Space-Time Trellis Codes in Quasistatic Flat Fading Channel (준정적 플랫 페이딩 채널에서 시공간 트렐리스 부호의 일반화된 부최적 복호법)

  • Kim Young Ju;Shin Sang Sup;Kang Hyun-Soo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.1 s.343
    • /
    • pp.89-94
    • /
    • 2006
  • We present a generalized version of principal ratio combining (PRC)[1], which is a near-optimum decoding scheme for space-time trellis codes in quasi-static flat fading environments. In [1], the performance penalty increases as the number of receive antennas increases. In the proposed scheme, receive antennas are divided into K groups, and the PRC decoding method is applied to each group. This shows a flexible tradeoff between performance and decoding complexity by choosing the appropriate K. Moreover, we also propose the performance index(PI) to easily predict the decoding performance among the possible different(receive antenna) configurations.

A Serial Acquisition Scheme for DS-SS Systems Using Antenna Arrays and Its Performance in a Fading Channel (안테나 배열을 사용한 DS-SS 시스템을 위한 직렬 포착 방식과 페이딩 채널에서의 성능)

  • 박민규;오성근
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.931-941
    • /
    • 2000
  • We propose a serial acquisition scheme using antenna arrays for initial acquisition of direct sequence spread spectrum (DS-SS) signals, which can lower substantially the range of detectable signal-to-noise ratio (SNR). The proposed scheme uses the sum of the independent decision samples form psedo-noise (PN) co-phased noncoherent I-Q matched filters (MFs) associated with antenna arrays as a decision variable in order to enhance SNR of the resulting signal. We analyze its mean acquisition time performance under an additive white Gaussian noise (AWGN) channel and a flat Rayleigh fading channel by deriving the expressions for the probabilities of detection and false alarm. From mumerical results, we see that the acquisition performance of the proposal scheme becomes improved continually as the number of antennas increses.

  • PDF

Co-Channel Interference Cancellation in Cellular OFDM Networks PART II: Co-Channel Interference Cancellation in Single Frequency OFDM Networks using Soft Decision MLE CCI Canceler

  • Mohaisen, Manar;Chang, Kyung-Hi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7A
    • /
    • pp.710-716
    • /
    • 2007
  • In this paper, a new scheme of downlink co-channel interference (CCI) cancellation in OFDM cellular networks is introduced for users at the cell-edge. Coordinated symbol transmission between base stations (BS) is operated where the same symbol is transmitted from different BS on different sub-carriers. At the mobile station (MS) receiver, we introduce a soft decision maximum likelihood CCI canceler and a modified maximum ratio combining (M-MRC) to obtain an estimate of the transmitted symbols. Weights used in the combining method are derived from the channels coefficients between the cooperated BSs and the MS. Simulations show that the proposed scheme works well under frequency-selective channels and frequency non-selective channels. A gain of 9 dB and 6 dB in SIR is obtained under multipath fading and flat-fading channels, respectively.

Performance Analysis of Hybrid Decode-and-Forward Schemes for 2-hop Wireless Network (2-홉 무선 네트워크를 위한 하이브리드 복호 후 전달 기법의 성능 분석)

  • Kong, Hyung-Yun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12A
    • /
    • pp.949-961
    • /
    • 2009
  • This paper analyses BER (Bit Error Rate) performance of 2-hop wireless communications networks with hybrid decode-and-forward (HDF) relays. The conventional HDF method is usually based on the receive signal-to-noise ratio (SNR) for the relay to decide whether to forward the decoded data in order to obviate the erroneous detection at the relay. In contrast, we propose a new solution of using log-likelihood ratio (LLR) as an efficient alternative to SNR. The approximate BER expressions of different HDF schemes are also derived and verified by Monte-Carlo simulations. In addition, we compute the optimum thresholds for HDF schemes. A variety of numerical results demonstrate that the new LLR-based HDF significantly outperforms the SNR-based HDF for any threshold level and relay location under flat Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

A Modified Method Based on the Discrete Sliding Norm Transform to Reduce the PAPR in OFDM Systems

  • Salmanzadeh, R.;Mozaffari Tazehkand, B.
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.42-50
    • /
    • 2014
  • Orthogonal frequency division multiplexing (OFDM) is a modulation technique that allows the transmission of high data rates over wideband radio channels subject to frequency selective fading by dividing the data into several narrowband and flat fading channels. OFDM has high spectral efficiency and channel robustness. However, a major drawback of OFDM is that the peak-to-average power ratio (PAPR) of the transmitted signals is high, which causes nonlinear distortion in the received data and reduces the efficiency of the high power amplifier in the transmitter. The most straightforward method to solve this problem is to use a nonlinear mapping algorithm to transform the signal into a new signal that has a smaller PAPR. One of the latest nonlinear methods proposed to reduce the PAPR is the $L_2$-by-3 algorithm, which is based on the discrete sliding norm transform. In this paper, a new algorithm based on the $L_2$-by-3 method is proposed. The proposed method is very simple and has a low complexity analysis. Simulation results show that the proposed method performs better, has better power spectral density, and is less sensitive to the modulation type and number of subcarriers than $L_2$-by-3.

Performance Analysis of Adaptive Collaborative Communications in Wireless Networks (무선네트워크에서 적응형 협력통신의 성능 분석에 관한 연구)

  • Khuong Ho Van;Kong Hyung-Yun;Jeong Hwi-Jae
    • The KIPS Transactions:PartC
    • /
    • v.13C no.6 s.109
    • /
    • pp.749-756
    • /
    • 2006
  • Broadcast nature of wireless medium and path-loss reduction create a favourable condition for collaborative communications (CC) among single-antenna users to gain the powerful benefits of multi-antenna system without the demand for physical arrays. This paper proposes a CC strategy adapting to the propagation environment changes by optimizing the transmit signal amplification factors to simplify the structure of maximum likelihood (ML) detector and to obtain the minimum error probability as well. The closed-form BER expression was also derived and compared to the simulation results to evaluate the performance of the suggested solution. A variety of numerical results revealed the cooperation significantly outperforms non-cooperative counterpart under flat Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

Performance Analysis of Transmit Weights Optimization for Cooperative Communications in Wireless Networks (무선네트워크의 협력통신을 위한 전송 무게(Transmit Weight) 최적화를 위한 연구)

  • Kong, Hyung-Yun;Ho, Van Khuong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.7 s.103
    • /
    • pp.1025-1030
    • /
    • 2005
  • Cooperative communications among users in multiple access wireless environments is an efficient way to obtain the powerful benefits of multi-antenna systems without the demand for physical arrays. This paper proposes a solution to optimize the weights of partnering users' signals for the minimum error probability at the output of maximum likelihood (ML) detector under the transmit power constraints by taking advantage of channel state information (CSI) feedback from the receiver to the transmitter. Simulation programs are also established to evaluate the performance of the system under flat Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

Suboptimum Decoding for Space-Time Trellis Codes in Slowly Fading Channels (느린 페이딩 채널에서 공간-시간 트렐리스 부호의 준최적 복호법)

  • Shin Sang-Seop;Kim Young-Ju
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8C
    • /
    • pp.771-776
    • /
    • 2006
  • We present a suboptimum decoding method for space-time trellis codes, which include maximum $likelihood(ML)^{[1]}$ and principal ratio $combining(PRC)^{[2]}$, over quasi-static flat fading channels. In the proposed scheme, the receive antennas are divided into K groups and the PRC is applied to each group, showing a flexible performances between ML and PRC. When K is determined, we also propose the optimum grouping rules and performance index(PI), which simply anticipate the relative performances. Moreover the performances are also evaluated when receive antennas are correlated. Finally, Computer simulations corroborate those theoretical results.

Iterative Multiple Symbol Differential Detection for Turbo Coded Differential Unitary Space-Time Modulation

  • Vanichchanunt, Pisit;Sangwongngam, Paramin;Nakpeerayuth, Suvit;Wuttisittikulkij, Lunchakorn
    • Journal of Communications and Networks
    • /
    • v.10 no.1
    • /
    • pp.44-54
    • /
    • 2008
  • In this paper, an iterative multiple symbol differential detection for turbo coded differential unitary space-time modulation using a posteriori probability (APP) demodulator is investigated. Two approaches of different complexity based on linear prediction are presented to utilize the temporal correlation of fading for the APP demodulator. The first approach intends to take account of all possible previous symbols for linear prediction, thus requiring an increase of the number of trellis states of the APP demodulator. In contrast, the second approach applies Viterbi algorithm to assist the APP demodulator in estimating the previous symbols, hence allowing much reduced decoding complexity. These two approaches are found to provide a trade-off between performance and complexity. It is shown through simulation that both approaches can offer significant BER performance improvement over the conventional differential detection under both correlated slow and fast Rayleigh flat-fading channels. In addition, when comparing the first approach to a modified bit-interleaved turbo coded differential space-time modulation counterpart of comparable decoding complexity, the proposed decoding structure can offer performance gain over 3 dB at BER of $10^{-5}$.