• Title/Summary/Keyword: Flat Surfaces

Search Result 347, Processing Time 0.027 seconds

A study on the Decoration of Women's costume style from the 18th century to the 19th century (18세기부터 19세기까지 여성 복식스타일에 나타난 장식에 관한 연구)

  • Son, Hyo-Rim;Kim, Jeong-Mee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.20 no.1
    • /
    • pp.29-47
    • /
    • 2018
  • This study aims at looking into women's costume style seen in 18th century to 19th century, and reason out a major decoration, then the formative and aesthetic characteristics of the decoration were analyzed. Research results are same as follows. Firstly, the style of women's costumes in the 18th and 19th century includes the Rococo style, Polonaise style, Neo-classic style, Romantic style and Bustle-style. The main decorations shown in these styles are the gather pleats drape of Fold decoration, the flat embroidery quilting of embroidery decoration, and the ribbon braid fringe button feather and fur of attachment decoration. Secondly, the analyzed results found the formative and aesthetic characteristics of the decoration in the 18th and 19th century women's costumes. Fold decorations appeared as a voluminous property in the form of gown mantua jacket pelisse and dress. Especially, femininity and exaggeration were expressed through greatly inflated skirts. Embroidery decoration appeared as planarity by making patterns of gown mantua jacket stomacher overskirt coat dress shawl and dolman. Especially, exaggeration and extravagance were expressed through embroidered mantua surfaces with peony rose poppy primrose daffodil morning glory tulip leaf and lattice patterns in variety of colored silk threads. Attachment decorations were mixed with elements of heterogeneity added to jackets, coats, gowns, petticoats, stomachers, mantuas, pelisses, mantles, dolmans, capes, overskirts and dresses. In particular, exaggeration and extravagance strongly expressed through the decoration with white fox fur at the hemline, neckline and sleeves of cream colored silk dolman.

The effect of resin cement type and cleaning method on the shear bond strength of resin cements for recementing restorations

  • Koodaryan, Roodabeh;Hafezeqoran, Ali;Maleki, Amin Khakpour
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.2
    • /
    • pp.110-117
    • /
    • 2017
  • PURPOSE. This laboratory study assessed the effect of different dentin cleaning procedures on shear bond strength of resin cements for recementing prosthesis. MATERIALS AND METHODS. A $4{\times}4$ flat surface was prepared on the labial surface of 52 maxillary central incisors. Metal frames ($4{\times}4{\times}1.5mm$) were cast with nickel-chromium alloy. All specimens were randomly divided into 2 groups to be cemented with either Panavia F2.0 (P) or RelyX Ultimate (U) cement. The initial shear bond strength was recorded by Universal Testing Machine at a crosshead speed of 0.5 mm/min. Debonded specimens were randomly allocated into 2 subgroups (n = 13) according to the dentin cleaning procedures for recementation. The residual cement on bonded dentin surfaces was eliminated with either pumice slurry (p) or tungsten carbide bur (c). The restorations were rebonded with the same cement and were subjected to shear test. Data failed the normality test (P < .05), thus were analyzed with Mann Whitney U-test, Wilcoxon signed rank test, and two-way ANOVA after logarithmic transformation (${\alpha}=.05$). RESULTS. The initial shear bond strength of group P was significantly higher than group U (P = .001). Pc and Uc groups presented higher bond strength after recementation compared to the initial bond strength. However, it was significant only in Pc group (P = .034). CONCLUSION. The specimens recemented with Panavia F2.0 provided higher bond strength than RelyX Ultimate cement. Moreover, a tungsten carbide bur was a more efficient method in removing the residual resin cement and increased the bond strength of Panavia F2.0 cement after recementation.

Raman Spectroscopy Study on the Adsorption Orientation of Biphenylcarboxlic Acid Derivatives (라만 분광법을 이용한 Biphenylcarboxylic Acid 유도체들의 흡착 배향 연구)

  • Heay Ran Choi;Kyu Seok Choi;Il Ki Jung;Hong Seok Song;Keun Ok Han;Ho Seob Choi;Sang Hee Lee;Soo-Chang Yu
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.439-446
    • /
    • 2003
  • Surface-enhanced Raman(SER) spectroscopy was utilized to investigate the adorption orientation of the 4-biphenylcarboxylic acid(BPCA) derivatives, such as 4'-cyano-BPCA(c-BPCA), 4'-mercapto-BPCA(m-BPCA), and 4'-amino-BPCA(a-BPCA), which were adsorbed on Au and Ag colloid monolayers. For the systematic approach, information regarding the adsorption behavior of benzoic acid, biphenyl, and BPCA was applied to the target molecules. From the spectral behaviors of benzene ring, C-H stretching, carboxylate anion, and the other finger printing vibrational modes, it was concluded that only the m-BPCA was adsorbed tilt with thiol group being adsorbed on Au surface, whereas the other molecules were adsorbed flat on both Au and Ag surfaces.

Evaluation of Crack Control and Permeability of Hydrophilic PVA fiber Reinforced Cement Composite (친수성 PVA 섬유보강 시멘트 복합체의 균열제어 및 투수성 평가)

  • Won Jing-Pil;Hwang Keum-Sik;Park Chan-Gi;Park Hae-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.3 s.81
    • /
    • pp.391-396
    • /
    • 2004
  • Plastic shrinkage crack occurs at the exposed surfaces of freshly placed concrete due to consolidation of the concrete mass and rapid evaporation of water from the surface. This so-called shrinkage crack is a major concern for concrete, especially for flat structures such as pavements, slabs for industrial factories and retaining walls. This study has been performed to obtain the plastic shrinkage and the permeability of hydrophilic poly vinyl alcohol(PVA) fiber reinforced mortar and concrete. Test results indicated that PVA fiber reinforced cement composite showed an ability to reduce the total crack area and the maximum crack width (as compared to plain and polypropylene fiber reinforced concrete). Also, according to the permeability test result, it was found that PVA fiber reinforced cement composite was more reducing than polypropylene fiber reinforced cement composite.

Effects of Humidity and Velocity on Frost Distribution Characteristics of Humid Air Flow on Cold Surfaces (차가운 표면위에서의 습공기 유동의 습도 및 속도가 착상분포 특성에 미치는 영향)

  • Kwon Jeong-Tae;Rew Keun-Ho;Lim Hyo-Jae;Han Ji-Won;Kwon Young Chul
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.213-218
    • /
    • 2005
  • In order to understand the heat and mass transfer characteristics of humid airflow in frosting conditions, a flat plate of aluminum with cooling modules located in the central part of the plate was used. A microscope system (resolution of 0.05 mm) was used for the measurement of local thickness of frost at seven points along the plate in the flow direction. For the total mass of frost at each test operation, an electronic balance (resolution of 1 mg) was used. The local frost thickness distributions far various test conditions were presented along with the frost mass data measured at the given operating times. The effect of humidity and velocity of humid air on frosting were analyzed.

A Study on the Forming Process Development off Long-neck Flange Using a Long Pipe (긴 관을 이용한 롱넥플랜지 성형공정 개발에 관한 연구)

  • 최간대;강우진;배원병;조종래
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.699-704
    • /
    • 2002
  • The pipe with a long-neck flange is widely used in power plants, chemical plants, and shipbuilding companies. New the pipe with a long-neck flange is manufactured by welding a thick flange to a pipe. But this long-neck flange pipe has some deflects in the welding region such as unfitting and local thermal fatigue, which weaken the strength around the neck of the flange. Moreover, after welding the flange, the contacting surfaces of the flange have to be machined flat. So, that is uneconomical. Therefore, to solve the above problems of the long-neck flange pipe, a new process, which has no defects around the flange neck, is required. In this study, three forming processes are suggested to get an enhanced long-neck flange. First suggested process consists of conical terming and flange forming. Second and third suggested processes consist of the bulging of a long pipe locally heated by induction coils and the flange forming. The differences between second and third suggestions are the thickness and local heating area of the pipe. That is, the thickness of the initial pipe of third suggestion is larger than that of the final product, and the local heating area is smaller than that of second suggestion. These three suggestions fur forming a long-neck flange are simulated by FE analyses with a commercial cede DEFORM 2D. Especially, the theoretical result of FE analysis on the first suggestion fur forming a long-neck flange is verified by the experiment with aluminum 6063 pipes. From the theoretical and experimental results, it is concluded that three suggested processes are very useful in order to manufacture the pipe with a long-neck flange without any deflects.

  • PDF

Development of Micro-stereolithography Technology using Metal Powder (금속 분말을 이용한 마이크로 광 조형 기술의 개발)

  • Lee J.W.;Lee I.H.;Cho D.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1155-1158
    • /
    • 2005
  • Micro-stereolithography is a newly proposed technology as a means that can fabricate a 3D micro structure of free form. It makes a 3D micro-structure by dividing the shape into many slices of relevant thickness along horizontal surfaces, hardening each layer of slice with a focused laser beam, and stacking them up to a desired shape. However, we do not anticipate the electric conductivity of the final product at the existing micro-stereolithography. The reason is that this technology uses polymer to make the product. Thus the new suspension which was mixed conventional photopolymer with metal powder was developed in this study. The developed suspensions were based on SL5180 which is commercialized resin and IMS03 that is made in our laboratory. And Triton X-100 was added at the suspension for getting the scattering effect and stabilizing effect. The layer recoating device was developed to be flat the mixed high viscosity suspension. A 3D micro structure was manufactured by using recoating system and micro-stereolithography system. The fabricated product was sintered to get the electric conductivity. After sintering, a pure copper product was made. In this study, new process was developed by making metal micro structure having an electric conductivity. This technology broadened the realm of the micro-stereolithography technology. And it will be applied to make the 3D micro structure of free form which has a high hardness and an electric conductivity in the near future.

  • PDF

Friction Behavior of Oil-enriched Nanoporous Anodic Aluminum Oxide Film (오일 함침된 나노 기공 산화알루미늄 필름의 마찰 거동)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Hahn, Jun-Hee;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.27 no.4
    • /
    • pp.193-197
    • /
    • 2011
  • Friction behavior of nanoporous anodic aluminum oxide(AAO) film was investigated. A 60 ${\mu}m$ thick AAO film having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. The AAO film was then saturated with paraffinic oil. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as the counterpart were carried out with normal load ranging from 0.1 N to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient significantly increased with the increase of load. The boundary lubrication layer of paraffinic oil contributed to the lower friction at relatively low load (0.1 N), but it is less effective at high load (1 N). Plastic deformed layer patches were formed on the worn surface of oil-enriched AAO at relatively low load (0.1 N) without evidence of tribochemical reaction. On the other hand, thick tribolayers were formed on the worn surface of both oil-enriched and as-prepared AAO at relatively high load (1 N) due to tribochemical reaction and material transfer.

Tribological Properties of Nanoporous Structured Alumina Film (나노기공구조를 가진 알루미나필름의 트라이볼로지 특성)

  • Kim, Hyo-Sang;Kim, Dae-Hyun;Ahn, Hyo-Sok;Hahn, Jun-Hee;Woo, Lee
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.14-20
    • /
    • 2010
  • Tribological properties of nanoporous structured alumina film was investigated. Alumina film (AAO: anodic aluminum oxide) of $60{\mu}m$ thickness having nanopores of 45 nm diameter with 105 nm interpore-diatance was fabricated by mild anodization process. Reciprocating ball-on-flat sliding friction tests using 1 mm diameter steel ball as a counterpart were carried out with wide range of normal load from 1 mN to 1 N in an ambient environment. The morphology of worn surfaces were analyzed using scanning electron microscopy. The friction coefficient was strongly influenced by the applied normal load. Smooth layer patches were formed on the worn surface of both AAO and steel ball at relatively high load (100 mN and 1 N) due to tribochemical reaction and compaction of wear debris. These tribolayers contributed to the lower friction at high loads. Extremely thin layer patches, due to mild plastic deformation of surface layer, were sparsely distributed on the worn surface of AAO at low loads (1 mN and 10 mN) without the evidence of tribochemical reaction. Delaminated wear particles were generated at high loads by fatigue due to repeated loading and sliding.

A Study on the Forming Process Development of a Long-neck Flange Using a Long Pipe (긴 관을 이용한 롱넥플랜지 성형공정 개발에 관한 연구)

  • Choe, Gan-Dae;Gang, U-Jin;Bae, Won-Byeong;Jo, Jong-Rae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.212-219
    • /
    • 2002
  • The pipe with a long-neck flange is widely used in power plants, chemical plants, and shipbuilding companies. Now the pipe with a long-neck flange is manufactured by welding a thick flange to a pipe. But this long-neck flange pipe has some defects in the welding region such as unfitting and local thermal fatigue, which weaken the strength around the neck of the flange. Moreover, after welding the flange, the contacting surfaces of the flange have to be machined flat. So, that is uneconomical. Therefore, to solve the above problems of the long-neck flange pipe, a new process, which has no defects around the flange neck, is required. In this study, three forming processes are suggested to get an enhanced long-neck flange. First suggested process consists of conical forming and flange forming. Second and third suggested processes consist of the bulging of a long pipe locally heated by induction coils and the flange forming. The differences between second and third suggestions are the thickness and local heating area of the pipe. That is, the thickness of the initial pipe of third suggestion is larger than that of the final product, and the local heating area is smaller than that of second suggestion. These three suggestions for forming a long-neck flange are simulated by FE analyses with a commercial code DEFORM 2D. Especially, the theoretical result of FE analysis on the first suggestion for forming a long-neck flange is verified by the experiment with aluminum 6063 pipes. From the theoretical and experimental results, it is concluded that three suggested processes are very useful in order to manufacture the pipe with a long-neck flange without any defects.