• Title/Summary/Keyword: Flat Part

Search Result 537, Processing Time 0.025 seconds

Effects of Functional Improvement of Multiaxis Flat Continuous Soil Cement Earth Retaining Wall (다축 평면 연속형 SCW 흙막이 벽체의 개선 효과)

  • Chung, Choong-Sub;Yoo, Chan Ho;Nam, Ho Seong;Choi, In Gyu;Baek, Seung Cheol
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.11
    • /
    • pp.7-22
    • /
    • 2023
  • In January 2022, a new legislation was enforced to enhance the safety of underground construction. Consequently, a comprehensive assessment of underground safety is now an integral part of the planning process, including an evaluation of its impact. Ensuring the stability of temporary retaining walls during underground excavation has become paramount, prompting a heightened focus on the assessment of underground safety. This study delves into the analysis of the Multi-axis Flat Continuous Soil Cement Wall retaining wall (MFS) construction method. This method facilitates the expansion of wall thickness in the ground and provides flexibility in selecting and spacing H-piles. Through laboratory model tests, we scrutinized the load-displacement behavior of the wall, varying the H-pile installation intervals using the MFS method. Additionally, a 3-dimensional numerical analysis was conducted to explore the influence of H-pile installation intervals and sizes on the load for different thicknesses of the MFS retaining wall. The displacement analysis yielded the calculation of the height of the arching effect acting on the wall. To further our understanding, a design method was introduced, quantitatively analyzing the results of axial force and shear force acting on the wall. This involved applying the maximum arching height, calculated by the MFS method, to the existing member force review method. The axial force and shear force, contingent on the H-pile installation interval and size applied to the MFS retaining wall, demonstrated a reduction effect ranging from 24.6% to 62.9%.

Hydraulic Model Experiment on the Circulation in Sagami Bay, Japan (II) - Dependence of the Circulation Pattern on External and Internal Rossby Number in Baroclinic Rotating Model

  • Choo Hyo-Sang;Sugimoto Takasige
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.5-20
    • /
    • 2002
  • To investigate the effect of mechanical parameters on the circulation and its fluctuation in Sagami Bay, baroclinic model experiments were carried out by use of a two-layer source-sink flow in a rotating tank. In the experiment, a simple coastal topography with flat bottom was reproduced. The results show that the path of the Through Flow, which corresponds to the branch current of the Kuroshio, depends on external Rossby number (Ro) and internal Rossby number $(Ro^*)$, and divided into two regimes. For $Ro^*\leq1.0$ in which Rossby internal radius of deformation of the Through Flow is smaller than the width of the approaching channel, the current flows along the Oshima Island as a coastal boundary density current separated from the western boundary of the channel. For $Ro^*>1.0$ it changes to a jet flow along the western boundary of the channel, separated from the coast of Oshima Island. The current is independent on both Ro and Ro* in the regime of $Ro^*>1.0,\;Ro\geq0.06$ and $Ro^*\leq1.0,\;Ro\geq0.06$. The pattern of the cyclonic circulation in the inner part of the bay is also determined by Ro and Ro*. In case of $Ro^*\leq1.0$, frontal eddies are formed in the northern boundary of the Through Flow. These frontal eddies intrude into the inner part along the eastern boundary of the bay providing vorticity to form and maintain the inner cyclonic circulation. For $Ro^*>1.0$, the wakes from the Izu peninsula are superposed intensifying the cyclonic circulation. The pattern of the cyclonic circulation is divided into three types; 1) weak cyclonic circulation and the inner anticyclonic circulation $(Ro<0.12)$. 2) cyclonic circulation in the bay $(0.12\leq Ro<0.25)$. 3) cyclonic circulation with strong boundary current $(RO\geq0.25)$.

Surface Lay Effects on the Lubrication Characteristics in the Valve Part of a Swash-plate Type Axial Piston Pump (표면가공무늬가 사판식 액셜 피스톤펌프의 밸브부 윤활특성에 미치는 영향에 관한 연구)

  • Shin, Jung-Hun;Kang, Bo-Sik;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.12-18
    • /
    • 2012
  • This application study of a swash-plate type axial piston pump was concerned about the lubrication characteristics between cylinder barrel and valve plate which are the main rotating body and its opposite sliding part respectively. A computer simulation was implemented to assess bearing and sealing functions of the fluid film between cylinder barrel and valve plate. A numerical algorithm was developed to facilitate simultaneous calculations of dynamic cylinder pressure, 3 degree-of-freedom barrel motions considering inertia effect, and fluid film pressure assuming full fluid film lubrication regime. Central clearance, tilt angle, and azimuth angle of the rotating body were calculated for each time step. Surface waviness was found to be an influential factor due to the small fluid film thickness which can appear in flat land bearings. Five surface lays which can form on the lubrication surface in accordance with machining process were defined and analyzed using the simulation tool. Oil leakage flow and frictional torque in the fluid film between cylinder barrel and valve plate were also calculated to discuss in the viewpoint of energy loss. The simulation results showed that in actual sliding conditions proper surface non-flatness can make a positive effect on the energy efficiency and reliability of the thrust bearing.

An Experimental Study on Sink Mark Formation in Compression Molded SMC Parts with Rib (리브를 가진 일체형 SMC 압축성형재의 Sink Mark 형성에 관한 실험적 연구)

  • 정진호;임용택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1490-1500
    • /
    • 1995
  • Compression molding of SMC (Sheet Molding Compound) in a thin plaque with substructures like a rib is involved with the formation of surface defect along the centerline over the rib area called by sink mark depending on process parameters. The surface quality of the external panels in automotive manufacturing is so critical that this kind of defect should be eliminated during manufacturing stages. The effect of process parameters on sink mark formation and the distribution of chopped fiberglasses in the compression molded thin plaque with a rib was experimentally investigated in the present study. In order to estimate the effect of the molding parameters such as molding temperature, mold closing speed, depth of the rib, corner radius of the rib, and final molded part thickness of flat portion on the depth of sink mark and the distribution of fiberglasses in the molded SMC part with the rib under the present experimental conditions, the molding parameters used in experiments were non-dimensionalized equation for predicting the depth of sink mark was determined through dimensional analysis based on the experimental data. The orientation and distribution of fiberglasses and fillers which directly affect the formation and depth of sink mark were investigated by taking the photographs of the cross-sectional area of the molded specimen using scanning electron microscope. The experimental results proposed from this investigation are useful in understanding the formation of sink mark and predicting the depth of sink mark in compression molding of SMC with substructures.

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

Structural Performance Evaluation to Centrally Compressed CFT Columns Using Seismic Rectangular Steel Tube (중심압축력을 받는 내진 건축구조용 각형강관 CFT 부재의 구조성능평가)

  • Shim, Hyun-Ju;Choi, Byong-Jeong;Lee, Eun-Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.443-450
    • /
    • 2012
  • In this study, This study investigates the axial load behavior of concrete-filled steel columns using seismic rectangular steel tube with the width-to-thickness and slenderness ratio. Due to cold-roll forming and cold-press forming of steel tube, the flat part and the corner part of the rectangular steel tubes are changed in the material properties compared to SN-steel plate. It was showed the tendency to increase yield strength, tensile strength and upper limit of yield ratio This phenomenon affects the nonlinear behavior after local buckling of the steel tube. Therefore, the coupon test was performed by the processing of rectangular steel tube, in order to assess forming performance. And a total of 6 CFT-columns were tested under monotonic loading condition. Main parameters were the width-thickness ratio and the slenderness ratio.

Turbulent Flow over 2-D Rectangular-Shaped Roughness Elements with Various Spacings(Part 2 : Turbulence, Friction Velocity and Integral Parameters) (사각단면을 갖는 환경 거칠기 요소의 거칠기 간격에 따른 유동 변화(제2보 : 난류, 마찰속도 및 적분변수))

  • Hyun B.S.;Suh E.J.;Moon J.S.;Kim G.W.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • This study deals with the flow over a flat plate with repeated roughness elements of 2-dimensional rectangular shape, which can be applied into the study on the natural geographical roughness and the turbulent flow on roughened solid surface. Part 1 of the study showed that the ratio between the spacing and the height of roughness elements plays a crucial role in developing the flow pattern near wall surface. The present study complements the turbulence characteristics, the utilization of friction velocity as well as integral parameters. Results confirmed that k-type roughness(s/H=7 or 14) is certainly a more effective means than d-type roughness (s/H=3.5) in thickening the viscous region.

  • PDF

Citizen Participation of the Million Amenity Park (100만평문화공원 조성을 위한 주민참여활동)

  • Kim Seung-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.22-39
    • /
    • 2006
  • This paper is the study on the activity of citizen participation in the movement of Million Amenity Park's creation which was proposed by citizen participation for large scale's flat park within city. This park was proposed by the Busan Green Plan, commission study in 1999. The location of Park site was finally proposed at Dunchi-do, Bonglim-dong, Gangseo-gu, Busan and neighbor areas. The area of park site is approximately 500ha included the surface area of West-Nakdong River. Citizen's organization for Million Amenity Park which has 3,500 members, was established in 2001 in order to compose Million Amenity Park The development processes of this study were found to have quickening period, germination period, the 1st growing period, and the 2nd growing period, and then the results of this activity was also arranged by the researcher of this study. The movement for this park was found to have a positive activity for participating and understanding all the citizens during 7 years. And then the activities for this park were as follows: every information, fund-raising campaign, organization, purchase of park site, contribution of purchasing park site to Busan city. The results of this study, through the movement of citizen's participation such as this park movement were 1) respectively found to have the settlement in the movement of NGO, 2) the possibility of large scale's park fostering by public and civil partnership, and 3) the model presentation of frontier park in the citizen participation's types which will be able to introduce the development of city.

Spatial Structure Analysis of View Angle Correction reflecting Characteristics of Universal Observation (보편적 주시특성을 반영한 시야각 보정 공간구조 분석)

  • Kim, Suk-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6917-6924
    • /
    • 2015
  • The universal nature of humans is formed by the view angle and the visibility range. However, the majority of theories on spatial structure analysis based on the visual perception do neither reflect the view angle nor consider only the flat view angle. Some theories that reflect them is a theory where the part included in the view angle and the part excluded in the view angle have been separated in a dichotomous way, excluding the universal characteristics of humans. This study applied an observing probability to a 3-D visibility analysis theory by conducting a eye-tracking experiment, empirically determining the limits of the field of view, and deriving the observing probability by view angle. In addition, it attempted to identify the probability by manufacturing an application of spacial, visual perception analysis and applying the concept of multiple frustum culling. For the characteristics of observation, the data were measured and collected regarding the walking course for 3 minutes for an optional space, aimed for 33 people as subjects. Subsequently, the data were prepared by analyzing the observation fixation frequency probability.

Analysis for Valuable Materials Disassembled from 40- and 42-inched Waste LCDs (Liquid Crystal Displays) (폐 중형 (40인치와 42인치) LCD (Liquid Crystal Display) 제품 해체 후 분리된 유가자원에 대한 분석)

  • Park, Hun-Su;Kim, Yong;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.25 no.2
    • /
    • pp.42-48
    • /
    • 2016
  • Although the generation of waste flat panel displays in Korea is expected to exceed one million sets in 2016, a comprehensive recycling technology has not yet been developed for effective recovery of valuable materials from the wastes, rendering to outshine the national prestige as a global leader in display industries. The overall aim of this study was to analyze the statistical data of various valuable materials and their ratio after dismantling 40-inch and 42-inch sized waste LCDs. The analysis results showed that plastic portion of the wastes was about 22% and the portion of PCB (Print Circuit Board) part was about 9% by weight whereas panel part was about 34% and leftovers including metals totalled about 35% by weight. Based on the analytical results, a higher value recycling process could be proposed with advanced material separation techniques.