• Title/Summary/Keyword: Flash fire

Search Result 198, Processing Time 0.019 seconds

A Development of Flash Fire Prediction Program for Combat System (전투 시스템의 순간 화재 예측 프로그램 개발)

  • Hwang, Hun-Gyu;Lee, Jang-Se;Lee, Seung-Chul;Park, Young-Ju;Lee, Hae-Pyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.255-261
    • /
    • 2013
  • In this paper, we developed and tested a program for prediction flash fire in a combat system. Purposes of the program are flash fire prediction of combat system for analysis vulnerability and survivability, and visualization for fire-related information. To do this, we defined critical components of the combat system which has probabilities of flash fire occurrence, and proposed Flash Fire Probability Tree which is based on Fault Tree Analysis(FTA). The program visualizes positions of critical components in combat system, positions of penetrated components, selected Flash Fire Probability Tree, temperature profile, and tables for properties of matters.

Experimental Study of flash point determination for Alcohols & Aromatic Compounds. (가연성 액체의 인화점 추정에 관한 실험적 연구)

  • 최세환;김광일
    • Fire Science and Engineering
    • /
    • v.7 no.2
    • /
    • pp.24-28
    • /
    • 1993
  • The flash point for flammable liquids (alcohol, aromatic compounds) were measured by Penskt-Martens's measuring apparatus with closed cup. As a result, it was observed that the flash points had the regular tendency according to the carbon number and the molecular structure. Consequently, the flash point for the alcohols were increased in proportion to the increase of the carbon number and branch number. The differences between the literature and experimental data are 14.6% for the relative error and 3.46$^{\circ}C$ in average for the measuring temperature.

  • PDF

A Numerical Study on the Flash Fire in the Combat System by the Kinetic Energy Ammunition and the Loaded Shells (운동에너지 탄과 적재포탄에 따른 전투시스템 내부에서의 순간화재발생에 대한 전산해석)

  • Lee, Seung-Chul;Jeon, Woo-Chul;Lee, Hae-Pyeong;Lee, Heon-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.828-832
    • /
    • 2013
  • In this paper, numerical analysis was performed about whether the flash fire of loaded shells breaks out in the virtual combat vehicle according to sorts of the kinetic energy ammunition as the preceding research for vulnerability analysis inside the combat system by an external threaty ammunition. In this simulation, Autodyn program was used and the Lee-Tarver ignition and growth model was used to determine the flash fire outbreak. In this study, the kinetic energy ammunition was set of type A and type B in two kinds and the loaded shells was set of COMPB, TNT, PBX9404 and ANB. As a result, TNT and PBX9404 have much higher flash fire probability than COMPB in high explosive, ANB has very low flash fire probability.

The Measurement of Flash Point of Water-Methanol and Water-Ethanol Systems Using Seta Flash Closed Cup Tester (Seta Flash 밀폐식 장치를 이용한 Water-Methanol과 Water-Ethanol계의 인화점 측정)

  • Ha, Dong-Myeong;Park, Sang Hun;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.29 no.2
    • /
    • pp.39-43
    • /
    • 2015
  • The flash point is the major property to characterize fire and explosion hazard of liquid mixtures. The flash point is the lowest temperature at which a liquid gives off enough vapor to form a flammable air-vapor mixture. The flash points of two aqueous mixtures, water-methanol and water-ethanol, were measured using Seta flash closed cup tester. A prediction method based on activity coefficient models, Wilson and UNIQUAC equations, was used to calculate the flash point. The calculated flash points were compared to the results by the calculating method using Raoult's law. The calculated values based on activity coefficients models were found to be better than those based on the Raoult's law.

Measurement and Prediction of the Flash Points and the Fire Points for the Flammable Binary Mixtures Using Open-cup Apparatus (개방식 장치를 이용한 가연성 2 성분계 혼합물의 인화점 및 연소점 측정 및 예측)

  • Ha, Doo-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.2 s.80
    • /
    • pp.47-52
    • /
    • 2007
  • The flash points and the fire points for the m-xylene+n-propionic acid and n-butanol+n-pentanol systems were measured by using Tag open-cup apparatus(AS1M D 1310-86). The experimental flash points of two binary systems were compared with the values calculated by the Raoult's law, Van Laar equation and Wilson equation. The calculated values based on the Raoult's law on m-xylene+n-propionic acid system were found to be better than those based on Van Laar and Wilson equations. The calculated values based on Van Laar equation on n-butanol+n-pentanol system were found to be better than those based on the Raoult's law and Wilson equation. The the fire points for the m-xylene+n-propionic acid system were about $7{\sim}8^{\circ}C$ above the flash points. In the case of n-butanol+n-pentanol system, the flash points and the fire points had been found to be identical.

The Measurement and Prediction of Maximum Flash Point Behavior for Binary Solution (이성분계 용액의 최대인화점 현상의 측정과 예측)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.70-74
    • /
    • 2013
  • The flash point is one of the most important physical properties to charaterize fire and explosion hazard of liquid solutions. The maximum flash point of liquid mixture is larger than those of the individual components. In this study, the flash points of 2-pentanol+acetic acid system were measured by Seta flash closed cup tester. This system exhibited the maximum flash point behavior. The flash points were estimated by the Raoult's law and the optimization methods using the van Laar and Wilson equations. The calculated values by optimization methods were found to be better than those based on the Raoult's law.

The Measurement of Fire and Explosion Properties of n-Pentadecane (노말펜타데칸의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.53-57
    • /
    • 2013
  • For the safe handling of n-pentadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-pentadecane were calculated. The lower flash points of n-pentadecane by using closed-cup tester were measured $118^{\circ}C$ and $122^{\circ}C$. The lower flash points and fire point of n-pentadecane by using open cup tester were measured $126^{\circ}C$ and $127^{\circ}C$, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-pentadecane. The experimental AIT of n-pentadecane was $195^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $118^{\circ}C$ and upper flash point $174^{\circ}C$ for n-pentadecane were 0.54 Vol.% and 6.40 Vol.%.

Measurement of Flash Point for Binary Mixtures of Methanol, Ethanol, 1-propanol and Toluene (Methanol, Ethanol, 1-propanol 그리고 Toluene 이성분 혼합계에 대한 인화점 측정)

  • Hwang, In Chan;Kim, Seon Woo;In, Se Jin
    • Fire Science and Engineering
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • The flash point is one of the most important parameters used to characterize the ignition and explosion hazards of liquids. Flash points were measured for several binary systems containing toluene, including {methanol+toluene}, {ethanol+toluene}, and {1-propanol+toluene}. Experiments were performed according to the standard test method using a SETA closed cup flash point tester. The measured flash points were compared with the predicted values calculated using the following $G^E$ models: Wilson, NRTL, and UNIQUAC. The average absolute deviation between the predicted and measured lower flash point was less than 1.69 K.

The Measurement of Fire and Explosion Properties of n-Hexadecane (노말헥사데칸의 화재 및 폭발 특성치의 측정)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.39-45
    • /
    • 2014
  • For the safe handling of n-hexadecane, the lower flash points and the upper flash point, fire point, AITs(auto-ignition temperatures) by ignition delay time were experimented. Also lower and upper explosion limits by using measured the lower and upper flash points for n-hexadecane were calculated. The lower flash points of n-hexadecane by using the Setaflash and the Pensky-Martens closed testers were measured $128^{\circ}C$ and $126^{\circ}C$, respectively. The lower flash points of the Tag and the Cleveland open cup testers were measured $136^{\circ}C$ and $132^{\circ}C$, respectively. The fire points of the Tag and the Cleveland open cup testers were measured $144^{\circ}C$. respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659 apparatus for n-hexadecane. The experimental AIT of n-hexadecane was $200^{\circ}C$. The calculated lower and upper explosion limit by using measured lower $128^{\circ}C$ and upper flash point $180^{\circ}C$ for n-hexadecane were 0.42 Vol.% and 4.70 Vol.%.

Prediction and Measurement of Flash Point and Fire Point of Aromatic Hydrocarbons (방향족탄화수소의 인화점과 연소점 측정 및 예측)

  • Ha Dong-Myeong;Han Jong-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.3 s.28
    • /
    • pp.21-26
    • /
    • 2005
  • The flash points and the fire points are one of the most important combustible properties used to determine the potential for the fire and explosion hazards of flammable substances. In this study, the flash points of aromatic hydrocarbons, were measured by using Pensky-Martens Closed Cup apparatus(ASTM-D93) and Tag Open-Cup apparatus(ASTM D 1310-86). Also the fire points of aromatic hydrocarbons, were measured by using Tag Open-Cup apparatus. The measured flash points were in good agreement with reference values. The measured fire points compared with the estimated values based on 1.23 times stoichiometric concentration. The values calculated by the proposed equation were in agreement with measured values.

  • PDF