• Title/Summary/Keyword: Flash Memory Storage

Search Result 285, Processing Time 0.026 seconds

Garbage Collection Synchronization Technique for Improving Tail Latency of Cloud Databases (클라우드 데이터베이스에서의 꼬리응답시간 감소를 위한 가비지 컬렉션 동기화 기법)

  • Han, Seungwook;Hahn, Sangwook Shane;Kim, Jihong
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.767-773
    • /
    • 2017
  • In a distributed system environment, such as a cloud database, the tail latency needs to be kept short to ensure uniform quality of service. In this paper, through experiments on a Cassandra database, we show that long tail latency is caused by a lack of memory space because the database cannot receive any request until free space is reclaimed by writing the buffered data to the storage device. We observed that, since the performance of the storage device determines the amount of time required for writing the buffered data, the performance degradation of Solid State Drive (SSD) due to garbage collection results in a longer tail latency. We propose a garbage collection synchronization technique, called SyncGC, that simultaneously performs garbage collection in the java virtual machine and in the garbage collection in SSD concurrently, thus hiding garbage collection overheads in the SSD. Our evaluations on real SSDs show that SyncGC reduces the tail latency of $99.9^{th}$ and, $99.9^{th}-percentile$ by 31% and 36%, respectively.

A Study of Acquisition and Analysis on the Bios Firmware Image File in the Digital Forensics (디지털 포렌식 관점에서 BIOS 펌웨어 이미지 파일 수집 및 분석에 관한 연구)

  • Jeong, Seung Hoon;Lee, Yun Ho;Lee, Sang Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.491-498
    • /
    • 2016
  • Recently leakages of confidential information and internal date have been steadily increasing by using booting technique on portable OS such as Windows PE stored in portable storage devices (USB or CD/DVD etc). This method allows to bypass security software such as USB security or media control solution installed in the target PC, to extract data or insert malicious code by mounting the PC's storage devices after booting up the portable OS. Also this booting method doesn't record a log file such as traces of removable storage devices. Thus it is difficult to identify whether the data are leaked and use trace-back technique. In this paper is to propose method to help facilitate the process of digital forensic investigation or audit of a company by collecting and analyzing BIOS firmware images that record data relating to BIOS settings in flash memory and finding traces of portable storage devices that can be regarded as abnormal events.

Performance Evaluation of SSD Cache Based on DM-Cache (DM-Cache를 이용해 구현한 SSD 캐시의 성능 평가)

  • Lee, Jaemyoun;Kang, Kyungtae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.11
    • /
    • pp.409-418
    • /
    • 2014
  • The amount of data located in storage servers has dramatically increased with the growth in cloud and social networking services. Storage systems with very large capacities may suffer from poor reliability and long latency, problems which can be addressed by the use of a hybrid disk, in which mechanical and flash memory storage are combined. The Linux-based SSD(solid-state disk) uses a caching technique based on the DM-cache utility. We assess the limitations of DM-cache by evaluating its performance in diverse environments, and identify problems with the caching policy that it operates in response to various commands. This policy is effective in reducing latency when Linux is running in native mode; but when Linux is installed as a guest operating systems on a virtual machine, the overhead incurred by caching actually reduces performance.

Adaptive Design Techniques for High-speed Toggle 2.0 NAND Flash Interface Considering Dynamic Internal Voltage Fluctuations (고속 Toggle 2.0 낸드 플래시 인터페이스에서 동적 전압 변동성을 고려한 설계 방법)

  • Yi, Hyun Ju;Han, Tae Hee
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.251-258
    • /
    • 2012
  • Recently, NAND Flash memory structure is evolving from SDR (Single Data Rate) to high speed DDR(Double Data Rate) to fulfill the high performance requirement of SSD and SSS. Accordingly, the proper ways of transferring data that latches valid data stably and minimizing data skew between pins by using PHY(Physical layer) circuit techniques have became new issues. Also, rapid growth of speed in NAND flash increases the operating frequency and power consumption of NAND flash controller. Internal voltage variation margin of NAND flash controller will be narrowed through the smaller geometry and lower internal operating voltage below 1.5V. Therefore, the increase of power budge deviation limits the normal operation range of internal circuit. Affection of OCV(On Chip Variation) deteriorates the voltage variation problem and thus causes internal logic errors. In this case, it is too hard to debug, because it is not functional faults. In this paper, we propose new architecture that maintains the valid timing window in cost effective way under sudden power fluctuation cases. Simulation results show that the proposed technique minimizes the data skew by 379% with reduced area by 20% compared to using PHY circuits.

Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems

  • Taylor, Stuart G.;Farinholt, Kevin M.;Park, Gyuhae;Todd, Michael D.;Farrar, Charles R.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.661-673
    • /
    • 2010
  • This paper presents recent developments in an extremely compact, wireless impedance sensor node (the WID3, $\underline{W}$ireless $\underline{I}$mpedance $\underline{D}$evice) for use in high-frequency impedance-based structural health monitoring (SHM), sensor diagnostics and validation, and low-frequency (< ~1 kHz) vibration data acquisition. The WID3 is equipped with an impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using a microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog-to-digital and digital-to-analog converters so that the same device can measure structural vibration data. The compact sensor node collects relatively low-frequency acceleration measurements to estimate natural frequencies and operational deflection shapes, as well as relatively high-frequency impedance measurements to detect structural damage. Experimental results with application to SHM, sensor diagnostics and low-frequency vibration data acquisition are presented.

Design and Implementation of a Data Storage System using Flash Memory for a TinyOS-based Sensor Node (플래시 메모리를 이용한 TinyOS 기반 센서 노드를 위한 데이터 저장 시스템의 설계 및 구현)

  • Han, Hyung-Jin;Lee, Ki-Hyuk;Song, Jun-Young;Choi, Won-Cul;Sohn, Ki-Rack
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.885-888
    • /
    • 2007
  • 본 논문은 무선 센서노드에서 측정되는 데이터들에 대한 저장 및 검색을 효율적으로 하기 위한 플래시 메모리 공간 관리 기법을 제안한다. 플래시 메모리는 외부 충격에 강하고, 비휘발성이며 접근이 빠른 장점이 있지만, 덮어쓰기 및 쓰기 횟수가 제한되는 단점이 있다. 이러한 특성으로 플래시 메모리는 기존의 저장매체와는 다른 관리 방법이 요구되었고 지금까지의 센서노드에서는 플래시 메모리를 사용 하지 않았다. 본 논문에서는 센서노드안의 플래시 메모리에서 순차적으로 측정되는 데이터를 관리하기 위해 LFS(Log-Structured File System)방식을 제안한다. 그리고 순차적으로 정렬된 데이터에 효율적인 검색방법을 제시하고, 이를 ZigbeX Mote의 TinyOS안에서 NesC로 구현하였다.

A Design and Implementation for a Reliable Data Storage in a Digital Tachograph (디지털 자동차운행기록계에서 안정적인 데이터 저장을 위한 설계 및 구현)

  • Baek, Sung Hoon;Son, Myunghee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.2
    • /
    • pp.71-78
    • /
    • 2012
  • The digital tachograph is a device that automatically records speed and distance of a vehicle, together with the driver's activity and vehicle status at an accident. It records vehicle speed, break status, acceleration, engine RPM, longitude and latitude of GPS, accumulated distance, and so on. European Commission regulation made digital tachographs mandatory for all trucks from 2005. Republic of Korea made digital tachographs mandatory for all new business vehicles from 2011 and is widening the range of vehicles that must install digital tachographs year by year. This device is used to analyze driver's daily driving information and car accidents. Under a car accident that makes the device reliability unpredictable, it is very important to store driving information with maximum reliability for its original mission. We designed and implemented a practical digital tachograph. This paper presents a storage scheme that consists of a first storage device with small capacity at a high reliability and a second storage device with large capacity at a low cost in order to reliably records data with a hardware at a low cost. The first storage device records data in a SLC NAND flash memory in a log-structured style. We present a reverse partial scan that overcomes the slow scan time of log-structured storages at the boot stage. The scheme reduced the scan time of the first storage device by 1/50. In addition, our design includes a scheme that fast stores data at a moment of accident by 1/20 of data transfer time of a normal method.

The Authentication and Key Management Method based on PUF for Secure USB (PUF 기반의 보안 USB 인증 및 키 관리 기법)

  • Lee, Jonghoon;Park, Jungsoo;Jung, Seung Wook;Jung, Souhwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.12
    • /
    • pp.944-953
    • /
    • 2013
  • Recently, a storage media is becoming smaller and storage capacity is also becoming larger than before. However, important data was leaked through a small storage media. To solve these serious problem, many security companies manufacture secure USBs with secure function, such as data encryption, user authentication, not copying data, and management system for secure USB, etc. But various attacks, such as extracting flash memory from USBs, password hacking or memory dump, and bypassing fingerprint authentication, have appeared. Therefore, security techniques related to secure USBs have to concern many threats for them. The basic components for a secure USB are secure authentication and data encryption techniques. Though existing secure USBs applied password based user authentication, it is necessary to develop more secure authentication because many threats have appeared. And encryption chipsets are used for data encryption however we also concern key managements. Therefore, this paper suggests mutual device authentication based on PUF (Physical Unclonable Function) between USBs and the authentication server and key management without storing the secret key. Moreover, secure USB is systematically managed with metadata and authentication information stored in authentication server.

Attribute-Rich Log-Structured Filesystem for Semantic File Search on SSD (SSD에서의 시맨틱 파일 검색을 위한 확장된 속성 제공의 로그기반 파일시스템)

  • Ki, An-Ho;Kang, Soo-Yong
    • Journal of Digital Contents Society
    • /
    • v.12 no.2
    • /
    • pp.241-252
    • /
    • 2011
  • During the last decades, other parts of operating systems, storage devices, and media are changed steadily, whereas filesystem is changed little. As data is grown bigger, the number of files to be managed also increases in geometrically. Researches about new filesystem schemes are being done widely to support these files efficiently. In web document search area, there are many researches about finding meaningful documents using semantic search. Many researches tried to apply these schemes, which is been proven in web document search previously, to filesystems. But they've focused only on higher layer of filesystem, that is not related seriously to storage media. Therefore they're not well tuned to physical characteristics of new flash memory based SSD which has different features against traditional HDD. We enhance log structured filesystem, that is already well known to work better in SSD, by putting semantic search scheme to and with multi logging point.

The Development and Performance Evaluation of the Mobile Spatial DBMS for the Partial Map Air Update in the Navigation (부분 맵 업데이트 지원 내비게이션을 위한 모바일 공간 DBMS 개발 및 성능 평가)

  • Min, Kyoung-Wook;An, Kyoung-Hwan;Kim, Ju-Wan;Jin, Sung-Il
    • The KIPS Transactions:PartD
    • /
    • v.15D no.5
    • /
    • pp.609-620
    • /
    • 2008
  • The service handling the map data in the mobile device including navigation, LBS, Telematics, and etc., becomes various. The size of map data which is stored and managed in the mobile device is growing and reaches in several GB. The conventional navigation system has used the read-only PSF (physical storage format) in order to enhance the performance of system by maximum in the mobile device which has limited resources. So though a little part of the map data is changed the whole data must be updated. In general, it takes several ten minutes to write the 2 GB map data to a flash memory of mobile device. Therefore, we have developed the mobile spatial DBMS (database management system) to solve the problem which is that the partial map data couldn't be updated in the conventional navigation system. And we suggest the policy to guarantee the performance of the navigation system which is implemented using the spatial mobile DBMS and verify this by experiment.