• Title/Summary/Keyword: Flanking region

Search Result 182, Processing Time 0.025 seconds

Polymorphism Identification, RH Mapping and Association of ${\alpha}$-Lactalbumin Gene with Milk Performance Traits in Chinese Holstein

  • Zhang, Jian;Sun, Dongxiao;Womack, J.E.;Zhang, Yi;Wang, Yachun;Zhang, Yuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1327-1333
    • /
    • 2007
  • Lactose synthase catalyses the formation of lactose which is the major osmole of bovine milk and regulates the milk volume. Alpha-lactalbumin (${\alpha}$-LA) is involved in the synthesis of lactose synthase in the mammary gland. Therefore ${\alpha}$-LA is regarded as a plausible candidate gene for the milk yield trait. To determine whether ${\alpha}$-LA is associated with milk performance traits, 1,028 Chinese Holstein cows were used to detect polymorphisms in the ${\alpha}$-LA by means of single-strand conformation polymorphism (SSCP). Two nucleotide transitions were identified in the 5'flanking region and intron 3 of ${\alpha}$-LA. Associations of such polymorphisms with five milk performance traits were analyzed using a general linear model procedure. No significant associations were observed between these polymorphisms and the five milk performance traits (p>0.05). RH mapping placed ${\alpha}$-LA on BTA5q21, linked most closely to markers U63110, CC537786 and L10347 (LOD>8.3), which is far distant from the region of the quantitative trait locus (QTL) on bovine chromosome 5 for variation in the milk yield trait. In summary, based on our findings, we eliminated these SNPs from having an effect on milk performance traits.

Identification of a Genetic Locus Related to Antivirus Production in Pseudomonas fluorescence strain Gpf01 Against Cucumber mosaic virus

  • Cho, Sae-Youll;Lee, Seon-Hwa;Park, Su-Jin;Choi, Kyu-Up;Cho, Jun-Mo;Hur, Jang-Hyun;Shrestha, Anupama;Lim, Chun-Keun
    • The Plant Pathology Journal
    • /
    • v.25 no.1
    • /
    • pp.77-85
    • /
    • 2009
  • Pseudomonas fluorescens strain Gpf01, isolated from ginseng rhizosphere showed antiviral activity against Cucumber mosaic virus, when tested in a local host of CMV, Chenopodium amaranticolor. Transposon mutant library of Gpf01 was prepared using pGS9::Tn5 and the mutant Gpf01-RS19 was found to loose antiviral production. We developed primers from the flanking region of Tn5 and found a cosmid clone pAV1123, harboring 1.2 kb antiviral compound producing (avcf01) locus. When a sub-clone pPH9, which carried 9.3 kb region of pAV1123, was introduced into antivirus deficient P. fluorescens wild type strain B16, it exhibited antiviral activity. Using Tn3-gus mutagenesis and complementation analysis, it was found that the genes related to antiviral activity production resided in a 9.3 kb HindIII-HindIII fragment of pAV1123, indicating that the plasmid carries an essential genes promoting antiviral activity.

Isolation and Characterization of the Colletotrichum acutatum ABC Transporter CaABC1

  • Kim, Suyoung;Park, Sook-Young;Kim, Hyejeong;Kim, Dongyoung;Lee, Seon-Woo;Kim, Heung Tae;Lee, Jong-Hwan;Choi, Woobong
    • The Plant Pathology Journal
    • /
    • v.30 no.4
    • /
    • pp.375-383
    • /
    • 2014
  • Fungi tolerate exposure to various abiotic stresses, including cytotoxic compounds and fungicides, via their ATP-driven efflux pumps belonging to ATP-binding cassette (ABC) transporters. To clarify the molecular basis of interaction between the fungus and various abiotic stresses including fungicides, we constructed a cDNA library from germinated conidia of Colletotrichum acutatum, a major anthracnose pathogen of pepper (Capsicum annum L.). Over 1,000 cDNA clones were sequenced, of which single clone exhibited significant nucleotide sequence homology to ABC transporter genes. We isolated three fosmid clones containing the C. acutatum ABC1 (CaABC1) gene in full-length from genomic DNA library screening. The CaABC1 gene consists of 4,059 bp transcript, predicting a 1,353-aa protein. The gene contains the typical ABC signature and Walker A and B motifs. The 5'-flanking region contains a CAAT motif, a TATA box, and a Kozak region. Phylogenetic and structural analysis suggested that the CaABC1 is a typical ABC transporter gene highly conserved in various fungal species, as well as in Chromista, Metazoans, and Viridiplantae. We also found that CaABC1 was up-regulated during conidiation and a minimal medium condition. Moreover, CaABC1 was induced in iprobenfos, kresoxim-methyl, thiophanate-methyl, and hygromycin B. These results demonstrate that CaABC1 is necessary for conidiation, abiotic stress, and various fungicide resistances. These results will provide the basis for further study on the function of ABC transporter genes in C. acutatum.

Transcription Analysis of Daptomyc in Biosynthetic Genesin Streptomyces roseosporus

  • Rhee, Ki-Hyeong;Davies, Julian
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.12
    • /
    • pp.1841-1848
    • /
    • 2006
  • Insights into gene expression have the potential for improvement of antibiotic yield and the development of robust production hosts for use in recombinant biomolecule production. $Cubicin^{TM}$ (daptomycin for injection) is a recently approved antibiotic active against many Gram(+) pathogens, including those resistant to methicillin, vancomycin, and fluoroquinolones. Daptomycin is produced as a secondary metabolite by Streptomyces roseosporus. A 128 kb region of DNA including the daptomycin biosynthetic gene cluster (dpt) has been cloned. and sequenced. Using a selected array of nucleic acid probes representing this region, we compared the expression levels of the dpt genes between S. roseosporus wild-type (WT) and derived S. roseosporus high-producer of daptomycin (HP). We observed that the majority of the biosynthetic genes were upregulated in HP compared with WT; a total of 12 genes, including those encoding daptomycin synthetase, showed consistently and significantly higher expression levels, at least 5-fold, in HP compared with WT. In contrast, some genes, flanking the dpt cluster, were expressed at higher levels in the WT strain. The expression of housekeeping genes such as S. roseosporus rpsL, rpsG, and 16S (positive controls) and presumptive intergenic regions in the dpt cluster (negative control) were identical in the two strains. In addition, we compared transcription during the early, mid-log, and early-stationary phases of growth in the HP strain. The same set of genes was upregulated and downregulated under all conditions examined; housekeeping genes showed no relative change in expression level over the periods of growth tested. Analyses of this type would be of value in studies of strain improvement and also for the identification of gene regulation processes that are important for secondary metabolite production.

A Strong Transcription Activity of the Bombyx mori Elongation Factor 1α Promoter

  • Goo, Tae-Won;Kim, Sung-Wan;Kim, Seong-Ryul;Park, Seung-Won;Kang, Seok-Woo;Choi, Kwang-Ho;Yun, Eun-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.24 no.2
    • /
    • pp.49-55
    • /
    • 2012
  • We previously isolated 9 clones that show stronger signal compared to B. mori cytoplasmic actin gene (BmA3) by using a dot blot hybridization. In this study, we focused on one clone among these clones which has high amino acid homology with elongation factor ${\alpha}$ gene of B. mori. This clone, named $bEF1{\alpha}$ (B. mori elongation factor ${\alpha}$) was ubiquitously expressed in all tissues and developmental stage of B. mori. As result of promoter assay using dual luciferase assay system, we found the highest transcription activity region (-702/+38) in the 5'-flanking region of $bEF1{\alpha}$ gene, which has about 20 fold more intensive promoter activity than BmA3 promoter. Moreover, the $bEF1{\alpha}$ promoter was normally regulated in Bm5, Sf9, and S2 cells. Therefore, we suggest that $bEF1{\alpha}$ promoter may be used more powerful and effectively for transgene expression in various insects containing B. mori as a universal promoter.

Mutation Analysis of the Dimer Forming Domain of the Caspase 8 Gene in Oral Submucous Fibrosis and Squamous Cell Carcinomas

  • Menon, Uthara;Poongodi, V;Raghuram, Pitty Hari;Ashokan, Kannan;Govindarajan, Giri Valanthan Veda;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4589-4592
    • /
    • 2015
  • Background: Missense and frame-shift mutations within the dimer forming domain of the caspase 8 gene have been identified in several cancers. However, the genetic status of this region in precancerous lesions, like oral submucous fibrosis (OSMF), and well differentiated oral squamous cell carcinomas (OSCCs) in patients from southern region of India is not known, and hence the present study was designed to address this issue. Materials and Methods: Genomic DNA isolated from biopsy tissues of thirty one oral submucous fibrosis and twenty five OSCC samples were subjected to PCR amplification with intronic primers flanking exon 7 of the caspase 8 gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the status of mutation. Results: Sequence analysis identified a frame-shift and a novel missense mutation in two out of twenty five OSCC samples. The frame-shift mutation was due to a two base pair deletion (c.1225_1226delTG), while the missense mutation was due to substitution of wild type cysteine residue with phenylalanine at codon 426 (C426F). The missense mutation, however, was found to be heterozygous as the wild type C426C codon was also present. None of the OSMF samples carried mutations. Conclusions: The identification of mutations in OSCC lesions but not OSMF suggests that dimer forming domain mutations in caspase 8 may be limited to malignant lesions. The absence of mutations in OSMF also suggests that the samples analyzed in the present study may not have acquired transforming potential. To the best of our knowledge this is the first study to have explored and identified frame-shift and novel missense mutations in OSCC tissue samples.

Genome-Wide Association Study of Orthostatic Hypotension and Supine-Standing Blood Pressure Changes in Two Korean Populations

  • Hong, Kyung-Won;Kim, Sung Soo;Kim, Yeonjung
    • Genomics & Informatics
    • /
    • v.11 no.3
    • /
    • pp.129-134
    • /
    • 2013
  • Orthostatic hypotension (OH) is defined by a 20-mm Hg difference of systolic blood pressure (dtSBP) and/or a 10-mm Hg difference of diastolic blood pressure (dtDBP) between supine and standing, and OH is associated with a failure of the cardiovascular reflex to maintain blood pressure on standing from a supine position. To understand the underlying genetic factors for OH traits (OH, dtSBP, and dtDBP), genome-wide association studies (GWASs) using 333,651 single nucleotide polymorphisms (SNPs) were conducted separately for two population-based cohorts, Ansung (n = 3,173) and Ansan (n = 3,255). We identified 8 SNPs (5 SNPs for dtSBP and 3 SNPs for dtDBP) that were repeatedly associated in both the Ansung and Ansan cohorts and had p-values of < $1{\times}10^{-5}$ in the meta-analysis. Unfortunately, the SNPs of the OH case control GWAS did not pass our p-value criteria. Four of 8 SNPs were located in the intergenic region of chromosome 2, and the nearest gene (CTNNA2) was located at 1 Mb of distance. CTNNA2 is a linker between cadherin adhesion receptors and the actin cytoskeleton and is essential for stabilizing dendritic spines in rodent hippocampal neurons. Although there is no report about the function in blood pressure regulation, hippocampal neurons interact primarily with the autonomic nervous system and might be related to OH. The remaining SNPs, rs7098785 of dtSBP trait and rs6892553, rs16887217, and rs4959677 of dtDBP trait were located in the PIK3AP1 intron, ACTBL2-3' flanking, STAR intron, and intergenic region, respectively, but there was no clear functional link to blood pressure regulation.

TGIF Site is Involved in Expression of Human Cervical Cancer Oncogene (HCCR) 발현 조절 (TGIF에 의한 Human cervical cancer oncogene (HCCR) 발현 조절)

  • Cho, Goang-Won
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1289-1293
    • /
    • 2009
  • Proto-oncogene human cervical cancer oncogene (HCCR) functions as a negative regulator of p53 and contributes to tumorigenesis in various human tissues. However, it is unknown how HCCR contributes to the cellular and biochemical mechanisms of human tumorigenesis. In this study, we showed how the expression of HCCR is modulated. The luciferase activity assay indicated that the HCCR 5'-flanking region at positions -370 to -406 plays an important role in the promoter activity. Computational analysis of this region identified one consensus sequence for the TG-interacting factor (TGIF) located at -390 to -366 (TG). Mobility shift assays (EMSA) revealed that nuclear proteins from K562 bind to the TG site, but not to the mutated TG site. The reporter activity assay with promoter constructs carrying mutated TGIF sequences pGL3-mTGIF significantly increased reporter activities compared to wild type constructs pGL3-$406{\sim}+30$. In this study, we characterized the HCCR promoter and found that HCCR expression was partially regulated by the transcription repressor TGIF, which bound the promoter at positions -390 to -366.

Tyrosine 1045 Codon Mutations in Exon 27 of EGFR are Infrequent in Oral Squamous Cell Carcinomas

  • Tushar, Mehta Dhaval;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.7
    • /
    • pp.4279-4282
    • /
    • 2013
  • Background: The activation and inactivation of receptor tyrosine kinases are tightly regulated to ensure faithful replication of cells. After having transduced extracellular growth activating signals, activated EGFR is subjected to downregulation either by clathrin mediated endocytosis or c-Cbl mediated proteasome degradation depending on the ligand concentration. c-Cbl is an ubiquitin ligase which requires a phosphorylated tyrosine residue at position 1045 in the cytoplasmic domain of EGFR to interact and add ubiquitin molecules. While activating mutations in exons 19 and 21 have been associated with the development of several cancers, the status of mutations at tyrosine 1045 coding exon 27 of EGFR remain to be investigated. Consistently, defective phosphorylation at 1045 has been associated with sustained phosphorylation of EGFR in non-small lung carcinomas. Hence in the present study we investigated the genetic status of the tyrosine 1045 coding site within exon 27 of EGFR gene to explore for possible occurrence of mutations in this region, especially since no studies have addressed this issue so far. Materials and Methods: Tumor chromosomal DNA isolated from thirty five surgically excised oral squamous cell carcinoma tissues was subjected to PCR amplification with intronic primers flanking the tyrosine 1045 coding exon 27 of EGFR gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. Results: Sequence analysis identified no mutations in the tyrosine 1045 codon of EGFR in any of the thirty five samples that were analyzed. Conclusions: The lack of identification of mutation in the tyrosine 1045 codon of EGFR suggests that mutations in this region may be relatively rare in oral squamous cell carcinomas. To the best of our knowledge, this study is the first to have explored the genetic status of exon 27 of EGFR in oral squamous cell carcinoma tissue samples.

Hypermethylation of Promoter Region of LATS1 - a CDK Interacting Protein in Oral Squamous Cell Carcinomas - a Pilot Study in India

  • Reddy, Vijaya Ramakrishna;Annamalai, Thangavelu;Narayanan, Vivek;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1599-1603
    • /
    • 2015
  • Background: Epigenetic silencing of tumor suppressor genes due to promoter hypermethylation is one of the frequent mechanisms observed in cancers. Hypermethylation of several tumor suppressor genes involved in cell cycle regulation has been reported in many types of tumors including oral squamous cell carcinomas. LATS1 (Large Tumor Suppressor, isoform 1) is a novel tumor suppressor gene that regulates cell cycle progression by forming complexes with the cyclin dependent kinase, CDK1. Promoter hypermethylation of the LATS1 gene has been observed in several carcinomas and also has been linked with prognosis. However, the methylation status of LATS1 in oral squamous cell carcinomas is not known. As oral cancer is one of the most prevalent forms of cancer in India, the present study was designed to investigate the methylation status of LATS1 promoter and associate it with histopathological findings in order to determine any associations of the genetic status with stage of differentiation. Materials and Methods: Tumor chromosomal DNA isolated from biopsy tissues of thirteen oral squamous cell carcinoma biopsy tissues were subjected to digestion with methylation sensitive HpaII enzyme followed by amplification with primers flanking CCGG motifs in promoter region of LATS1 gene. The PCR amplicons were subsequently subjected to agarose gel electrophoresis along with undigested amplification control. Results: HpaII enzyme based methylation sensitive PCR identified LATS1 promoter hypermethylation in seven out of thirteen oral squamous cell carcinoma samples. Conclusions: The identification of LATS1 promoter hypermethylation in seven oral squamous cell carcinoma samples (54%), which included one sample with epithelial dysplasia, two early invasive and one moderately differentiated lesions indicates that the hypermethylation of this gene may be one of the early event during carcinogenesis. To the best of our knowledge, this is the first study to have explored and identified positive association between LATS1 promoter hypermethylation with histopathological features in oral squamous cell carcinomas.