DOI QR코드

DOI QR Code

A Strong Transcription Activity of the Bombyx mori Elongation Factor 1α Promoter

  • Goo, Tae-Won (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, Sung-Wan (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kim, Seong-Ryul (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Park, Seung-Won (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Kang, Seok-Woo (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Choi, Kwang-Ho (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Yun, Eun-Young (Department of Agricultural Biology, National Academy of Agricultural Science, RDA)
  • Received : 2012.05.15
  • Accepted : 2012.06.28
  • Published : 2012.06.30

Abstract

We previously isolated 9 clones that show stronger signal compared to B. mori cytoplasmic actin gene (BmA3) by using a dot blot hybridization. In this study, we focused on one clone among these clones which has high amino acid homology with elongation factor ${\alpha}$ gene of B. mori. This clone, named $bEF1{\alpha}$ (B. mori elongation factor ${\alpha}$) was ubiquitously expressed in all tissues and developmental stage of B. mori. As result of promoter assay using dual luciferase assay system, we found the highest transcription activity region (-702/+38) in the 5'-flanking region of $bEF1{\alpha}$ gene, which has about 20 fold more intensive promoter activity than BmA3 promoter. Moreover, the $bEF1{\alpha}$ promoter was normally regulated in Bm5, Sf9, and S2 cells. Therefore, we suggest that $bEF1{\alpha}$ promoter may be used more powerful and effectively for transgene expression in various insects containing B. mori as a universal promoter.

Keywords

References

  1. Ailor E, Betenbaugh MJ (1999) Modifying secretion and posttranslational processing in insect cells. Curr Opin Biotechnol 10, 142-145. https://doi.org/10.1016/S0958-1669(99)80024-X
  2. Dever TE, Glynias MJ, Merrick WC (1987) GTP-binding domain: Three consensus sequence elements with distinct spacing. Proc Natl Acad Sci U S A. 84, 1814-1818. https://doi.org/10.1073/pnas.84.7.1814
  3. Goo TW, Yun EY, Hwang JS, Kang SW, Park S, You KH, Kwon OY (2002) Molecular characterization of a Bombyx mori protein disulfide isomerase (bPDI). Cell Stress Chaperones. 7, 118-125. https://doi.org/10.1379/1466-1268(2002)007<0118:MCOABM>2.0.CO;2
  4. Goo TW, Kim SW, Kim SR, Park SW, Kang SW, Lee KG, Kwon OY, Yun EY (2010) Utilization of the Bombyx mori Hypothetical Protein 32 Promoter for Efficient Transgene Expression. Int J Indust Entomol 20, 107-114.
  5. Goo TW, Kim SW, Kim YB, Kim SR, Park SW, Kang SW, Kwon OY, Yun EY (2011) A Powerful Ubiquitous Activity of Bombyx mori Heat Shock Protein 70 Promoter. Genes & Genomics 33, 635-643 https://doi.org/10.1007/s13258-011-0060-y
  6. Handler AM, McCombs SD, Fraser MJ Jr, Saul SH (1998) The Lepidopteran transposon vector, piggyBac, mediates germline transformation in the Mediterranean fruit fly. Proc Natl Acad Sci USA 9513, 7520-7525.
  7. Hershey JW (1991) Translational control in mammalian cells. Annu Rev Biochem 60, 717-755. https://doi.org/10.1146/annurev.bi.60.070191.003441
  8. Horn C, Schmid BGM, Pogoda FS, Wimmer EA (2002) Fluorescent transformation markers for insect transgenesis. Insect Biochem Mol Biol 32, 1221-1235. https://doi.org/10.1016/S0965-1748(02)00085-1
  9. Kato T, Kajikawa M, Maenaka K, Park EY (2010) Silkworm expression system as a platform technology in life science. Appl Microbiol Biotechnol 85, 459-470. https://doi.org/10.1007/s00253-009-2267-2
  10. Kjeldgaard M, Nyborg J (1992) Refined structure of elongation factor ef-tu from escherichia coli. J Mol Biol 223, 721-742. https://doi.org/10.1016/0022-2836(92)90986-T
  11. Mange A, Julien E, Prudhomme JC, Couble P (1997) A strong inhibitory element down-regulates SRE-stimulated transcription of the A3 cytoplasmic actin gene of Bombyx mori. J Mol Biol 265, 266-274. https://doi.org/10.1006/jmbi.1996.0734
  12. Royer C, Jalabert A, Da Rocha M. Grenier AM, Mauchamp B, Couble P, Chavancy G (2005) Biosynthesis and cocoonexport of a recombinant globular protein in transgenic silkworms. Transgenic Res 14, 463-472. https://doi.org/10.1007/s11248-005-4351-4
  13. Schultz J, Milpetz F, Bork P, Ponting CP (1998) Smart, a simple modular architecture research tool: Identification of signaling domains. Proc Natl Acad Sci USA 95, 5857-5864. https://doi.org/10.1073/pnas.95.11.5857
  14. Summers MD, Smith GE (1987) A methods for baculovirus vector and insect cell culture procedures, Texas Agricultural Experiment Station, Bulletin No. 1555.
  15. Sun SC, Lindstrom I, Boman HG, Faye I, Schmidt O (1990) Hemolin: an insect-immune protein belonging to the immunoglobulin superfamily. Science 250, 1729-1732. https://doi.org/10.1126/science.2270488
  16. Tamura T, Thibert C, Royer C, Kanda T, Abraham E, Kamba M, Komoto N, Thomas JL, Mauchamp B, Chavancy G, Shirk P, Fraser M, Prudhomme JC, Couble P (2000) Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nat Biotechnol 18, 81-84. https://doi.org/10.1038/71978
  17. Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G (2002) 3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem. Mol Biol 32, 247-253. https://doi.org/10.1016/S0965-1748(01)00150-3
  18. Tomita M, Munetsuna H, Sato T, Adachi T, Hino R (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Na. Biotechno. 21, 52-56. https://doi.org/10.1038/nbt771
  19. Tomita M, Hino R, Ogawa S, Iizuka M, Adachi T, Shimizu K, Sotoshiro H, Yoshizato K (2007) A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Res 16, 449-465. https://doi.org/10.1007/s11248-007-9087-x
  20. Tryselius Y, Samakovlis C, Kimbrell DA, Hultmark D (1992) CecC, a cecropin gene expressed during metamorphosis in Drosophila pupae. Eur J Biochem 204, 395-399. https://doi.org/10.1111/j.1432-1033.1992.tb16648.x
  21. Uchino K, Imamura M, Shimizu K, Kanda T, Tamura T (2007) Germ line transformation of the silkworm, Bombyx mori, using the transposable element Minos. Mol. Genet. Genomics 277, 213-220. https://doi.org/10.1007/s00438-006-0176-y
  22. Uhlrova M, Asahina M, Riddiford LM, Jindra M (2002) Heatinduciblei transgenic expression in the silkmoth Bombyx mori. Dev Genes Evol 212, 145-151. https://doi.org/10.1007/s00427-002-0221-8
  23. Wurm FM (2003) Human therapeutic proteins from silkworms. Nat. Biotechnol. 21, 34-35. https://doi.org/10.1038/nbt0103-34
  24. Xue R, Chen H, Cui L, Cao G, Zhou W, Zheng X, aGong C (2012) Expression of hgm-csf in silk glands of transgenic silkworms using gene targeting vector. Transgenic Res. 21, 101-111. https://doi.org/10.1007/s11248-011-9513-y
  25. Yun EY, Goo TW, Kim SW, Choi KH, Hwang JS, Kang SW, Kwon, OY (2005) Galatosylation and sialylation of mammalian glycoproteins produced by baculovirus-madiated gene expression in insect cells. Biotechnol Lett 7, 035-7039.
  26. Zhao A, Zhao T, Zhang Y, Xia Q, Lu C, Zhou Z, Xiang Z, Nakagaki M (2010) New and highly efficient expression systems for expressing selectively foreign protein in the silk glands of transgenic silkworm. Transgenic Res. 19, 29-44. https://doi.org/10.1007/s11248-009-9295-7