• Title/Summary/Keyword: Flanking region

Search Result 182, Processing Time 0.03 seconds

Role of Osmotic and Salt Stress in the Expression of Erythrose Reductase in Candida magnoliae

  • Park, Eun-Hee;Lee, Ha-Yeon;Ryu, Yeon-Woo;Seo, Jin-Ho;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.10
    • /
    • pp.1064-1068
    • /
    • 2011
  • The osmotolerant yeast, Candida magnoliae, which was isolated from honeycomb, produces erythritol from sugars such as fructose, glucose, and sucrose. Erythrose reductase in C. magnoliae (CmER) reduces erythrose to erythritol with concomitant oxidation of NAD(P)H. Sequence analysis of the 5'-flanking region of the CmER gene indicated that one putative stress response element (STRE, 5'-AGGGG-3'), found in Saccharomyces cerevisiae, exists 72 nucleotides upstream of the translation initiation codon. An enzyme activity assay and semiquantitative reverse transcription polymerase chain reaction revealed that the expression of CmER is upregulated under osmotic and salt stress conditions caused by a high concentration of sugar, KCl, and NaCl. However, CmER was not affected by osmotic and oxidative stress induced by sorbitol and $H_2O_2$, respectively. The basal transcript level of CmER in the presence of sucrose was higher than that in cells treated with fructose and glucose, indicating that the response of CmER to sugar stress is different from that of GRE3 in S. cerevisiae, which expresses aldose reductase in a sugarindependent manner. It was concluded that regulation of CmER differs from that of other aldose reductases in S. cerevisiae.

Tail-to-Head Tandem Duplication and Simple Repetitive Sequences of the Cytoplasmic Actin Genes in Greenling Hexagrammos otakii (Teleostei; Scorpaeniformes)

  • Lee, Sang-Yoon;Kim, Dong-Soo;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.303-310
    • /
    • 2011
  • We characterized a cytoplasmic actin gene locus in greenling Hexagrammos otakii (Scorpaeniformes). Genomic clones isolated from the greenling DNA library contained two homologous cytoplasmic actin gene copies (HObact2.1 and HObact2.2) in a tail-to-head orientation. Their gene structure is characterized by six translated exons and one non-translated exon. Exon-intron organization and the nucleotide sequences of the two actin gene isoforms are very similar. However, only the HObact2.1 isoform contains microsatellite-like, dinucleotide repeats in the 5'-flanking region (named HOms2002) and intron 1 following the non-translated exon 1 (named HOms769). One microsatellite locus (HOms769) was highly polymorphic while the other (HOms2002) was not. Based on bioinformatic analysis, different transcription factor binding motifs are related to stress and immune responses in the two actin isoforms. Semiquantitative and real-time reverse transcription-PCR assays showed that both isoform transcripts were detectable ubiquitously in all the tissues examined. However, the basal expression levels of each isoform varied across tissues. Overall, the two isoforms showed a similar, but not identical, expression pattern. Our data suggest that the cytoplasmic actin genes may be the result of a recent duplication event in the greenling genome, which has not experienced significant subfunctionalization in their housekeeping roles.

Genome-Wide Screening of Saccharomyces cerevisiae Genes Regulated by Vanillin

  • Park, Eun-Hee;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.50-56
    • /
    • 2015
  • During pretreatment of lignocellulosic biomass, a variety of fermentation inhibitors, including acetic acid and vanillin, are released. Using DNA microarray analysis, this study explored genes of the budding yeast Saccharomyces cerevisiae that respond to vanillin-induced stress. The expression of 273 genes was upregulated and that of 205 genes was downregulated under vanillin stress. Significantly induced genes included MCH2, SNG1, GPH1, and TMA10, whereas NOP2, UTP18, FUR1, and SPR1 were down regulated. Sequence analysis of the 5'-flanking region of upregulated genes suggested that vanillin might regulate gene expression in a stress response element (STRE)-dependent manner, in addition to a pathway that involved the transcription factor Yap1p. Retardation in the cell growth of mutant strains indicated that MCH2, SNG1, and GPH1 are intimately involved in vanillin stress response. Deletion of the genes whose expression levels were decreased under vanillin stress did not result in a notable change in S. cerevisiae growth under vanillin stress. This study will provide the basis for a better understanding of the stress response of the yeast S. cerevisiae to fermentation inhibitors.

Genomic Organization of Penicillium chrysogenum chs4, a Class III Chitin Synthase Gene

  • Park, Yoon-Dong;Lee, Myung-Sook;Kim, Ji-Hoon;Jun Namgung;Park, Bum-Chan;Bae, Kyung-Sook;Park, Hee-Moon
    • Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.230-238
    • /
    • 2000
  • Class III chitin synthases in filamentous fungi are important for hyphal growth and differentiation of several filamentous fungi. A genomic clone containing the full gene encoding Chs4, a class III chitin synthase in Penicillium chrysogenum, was cloned by PCR screening and colony hybridization from the genomic library. Nucleotide sequence analysis and transcript mapping of chs4 revealed an open reading frame (ORF) that consisted of 5 exons and 4 introns and encoded a putative protein of 915 amino acids. Nucleotide sequence analysis of the 5'flanking region of the ORF revealed a potential TATA box and several binding sites for transcription activators. The putative transcription initiation site at -716 position was identified by primer extension and the expression of the chs4 during the vegetative growth was confirmed by Northern blot analysis. Amino acid sequence analysis of the Chs4 revealed at least 5 transmembrane helices and several sites for past-transnational modifications. Comparison of the amino acid sequence of Chs4 with those of other fungi showed a close relationship between P chrysogenum and genus Aspergillus.

  • PDF

Genetic factors associated with development of cerebral malaria and fibrotic schistosomiasis

  • Hirayama, Kenji
    • Parasites, Hosts and Diseases
    • /
    • v.40 no.4
    • /
    • pp.165-172
    • /
    • 2002
  • Collaborative studies have identified some genetic factors contributing to the development of severe forms of malaria and schistosomiasis. In Thailand, the $TNF-{\alpha}{\;}5'-flanking$ region shows biallelic polymorphic sites at nucleotides -238, -308, -857, -863, and -1031, and seven alleles have been identified in patients from Myanmar. We found that the TNF promoter (TNFP)-D allele was significantly associated with cerebral malaria in populations from Karen (P < 0.0001. OR = 124.86) and ethnic Burma (P < 0.0001, OR = 34.50) . In China, we have identified two major genes related to the severity of liver fibrosis, one an HLA class II gene, and the other the IL-13 gene. The frequency of the HLA- DRB5*0101 allele and that of the IL-13 promoter A/A (IL- l3P- A/A) genotype were elevated in fibrotic patients, although the two genes are located on different chromosomes, chromosomes 6p and 5q, respectively Subjects with both genotypes had odds ratios (OR = 24.5) much higher than the sum of the ratios for each individual genotype (OR = 5.1,95% Confidence Interval 1.3-24.7 for HLA-DRB5*0101, OR = 3.1 95% CI 1.5 - 6.5 for IL-l3P-A/A). That the effects of the two susceptibility markers are synergistic rather than additive, strongly suggests that the pathogenic Th2 response directly influences the prognosis of post-schistosomal liver fibrosis.

Single Nucleotide Polymorphism in Cytochrome P450 2E1 among Korean Patients on Warfarin Therapy

  • Han, Dong-Hoon;Lee, Min-Jeon;Kim, Jeong-Hee;Lee, Suk-Hyang
    • Biomolecules & Therapeutics
    • /
    • v.14 no.4
    • /
    • pp.189-193
    • /
    • 2006
  • This study was designed to assess the distribution of cytochrome P450 2E1 (CYP2E1) polymorphism among Korean patients on warfarin therapy. CYP2E1 polymorphism was analyzed at 5' flanking region of CYP2E1 gene using restriction fragment length polymorphism method. Patient characteristics including the measured internal normalized ratio (INR) were also evaluated. Based on the warfarin dose and the bleeding cases, the patients were grouped as the regular dose control, the regular dose bleeding, the low dose control, and the low dose bleeding. Total 96 patients were evaluated for both Pst I and Rsa I loci of the CYP2E1 gene and the results showed that both loci were tightly linked. Thirty-three patients(34.4%) were heterozygotes and 4 patients(4.2%) were homozygote. There was no significant difference in patient characteristics in the dose and bleeding case groups. CYP2E1 polymorphism showed a little difference among the groups but was not statistically significant, however, lower INR value was observed in homozygote genotype groups. It was also revealed that genotype allele frequencies of CYP2E1 in Korean was close to other Asian groups but was significantly different from other Caucasian and African-American populations.

MMTS, a New Subfamily of Tc1-like Transposons

  • Ahn, Sang Jung;Kim, Moo-Sang;Jang, Jae Ho;Lim, Sang Uk;Lee, Hyung Ho
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.387-395
    • /
    • 2008
  • A novel Tc1-like transposable element has been identified as a new DNA transposon in the mud loach, Misgurnus mizolepis. The M. mizolepis Tc1-like transposon (MMTS) is comprised of inverted terminal repeats and a single gene that codes Tc1-like transposase. The deduced amino acid sequence of the transposase-encoding region of MMTS transposon contains motifs including DDE motif, which was previously recognized in other Tc1-like transposons. However, putative MMTS transposase has only 34-37% identity with well-known Tc1, PPTN, and S elements at the amino acid level. In dot-hybridization analysis used to measure the copy numbers of the MMTS transposon in genomes of the mud loach, it was shown that the MMTS transposon is present at about $3.36{\times}10^4$ copies per $2{\times}10^9$ bp, and accounts for approximately 0.027% of the mud loach genome. Here, we also describe novel MMTS-like transposons from the genomes of carp-like fishes, flatfish species, and cichlid fishes, which bear conserved inverted repeats flanking an apparently intact transposase gene. Additionally, BLAST searches and phylogenetic analysis indicated that MMTS-like transposons evolved uniquely in fishes, and comprise a new subfamily of Tc1-like transposons, with only modest similarity to Drosophila melanogaster (foldback element FB4, HB2, HB1), Xenopus laevis, Xenopus tropicalis, and Anopheles gambiae (Frisky).

Promoter Structure and Transcriptional Activity of Human Complement Receptor Type I (CR1) Gene

  • Kim, Jae-Hyun;Lee, Young-Ju;Nam, Ju-Ryoung;Shim, Hee-Bo;Choe, Soo-Young
    • Animal cells and systems
    • /
    • v.7 no.1
    • /
    • pp.63-68
    • /
    • 2003
  • Until recently, interest in human complement receptor type I (CR1) has focused on immune complex processing, which contributed to our understanding of regulatory mechanism of complement activation. However, the promoter structure and transcriptional regulation of human CR1 gene has not been clear. To study the unique regulation of human CR1 gene expression, we assessed promoter activity of the $5^1$-flanking region of human CR1 gene using transient transfection and gel mobility shift assays. In this study we demonstrated that NF-Y binds to the inverted CCAAT element and that the functional interaction with protein(s) which bind to the GC-rich motif may be necessary for optimal transcription of human CR1 gene. We also show that sequence elements which located at-95/58 and +45/+50 are important for optimal transcription of CR1 gene.

Dynamic DNA Methylation Change of Dnmt1o 5'-Terminal Region during Preimplantation Development of Cloned Pig (돼지 체세포 복제란 초기발달 과정 중 Dnmt1o 상류 영역의 다이내믹한 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Kim, Sung-Woo;Cho, Sang-Rae;Do, Yoon-Jung;Kim, Jae-Hwan;Kim, Sang-Woo;Kim, Hyun;Park, Jae-Hong;Park, Soo-Bong
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • DNA methyltransferase 1 (Dnmt1) gene contains three different isoform transcripts, Dnmt1s, Dnmt1o, and Dnmt1p, are produced by alternative usage of multiple first exons. Dnmt1o is specific to oocytes and preimplantation embryos, whereas Dnmt1s is expressed in somatic cells. Here we determined that porcine Dnmt1o gene had differentially methylated regions (DMRs) in 5'-flanking region, while those were not found in the Dnmt1s promoter region. The methylation patterns of the porcine Dnmt1o/Dnmt1s DMRs were investigated using bisulfite sequencing and pyrosequencing analysis through all preimplantation stages from one cell to blastocyst stage in in vivo or somatic cell nuclear transfer (SCNT). The Dnmt1o DMRs contained 8 CpG sites, which located in -640 bp to -30 bp upstream region from transcription start site of the Dnmt1o gene. The methylation status of 5 CpGs within the Dnmt1o DMRs were distinctively different at each stage from one-cell to blastocyst stage in the $in$ $vivo$ or SCNT, respectively. 55.62% methylation degree of the Dnmt1o DMRs in the $in$ $vivo$ was increased up to 84.38% in the SCNT embryo, moreover, $de$ $novo$ methylation and demethylation occurred during development of porcine embryos from the one-cell stage to the blastocyst stage. However, the DNA methylation states at CpG sites in the Dnmt1s promoter regions were hypomethylated, and dramatically not changed through one-cell to blastocyst stage in the $in$ $vivo$ or SCNT embryos. In the present study, we demonstrated that the DMRs in the promoter region of the porcine Dnmt1o was well conserved, contributing to establishment and maintenance of genome-wide patterns of DNA methylation in early embryonic development.

DNA Polymorphism in 5'-Flanking Region of Human Apolipoprotein A1 and Glutathione S-Transferase Mu1 Gene in Koreans

  • Jeong, Gi-Hwa;Kim, Hyeon-Seop;Lee, Hyeon-Suk;Choe, Wi-Hyeong;Kim, Jun-Gi;Lee, Yeon-Suk;Kim, Nam-Geun;Lee, Gyeong-Ryeong;Lee, Jeong-Chu
    • Animal cells and systems
    • /
    • v.1 no.2
    • /
    • pp.351-354
    • /
    • 1997
  • The distributions of G to A substitution ($G^{-75}{\rightarrow}A$) mutation in the human apolipoprotein A1 (APOAI) gene promoter region and glutathione S-tran-sferase Mu1 (GSTM1) gene deletion were examined in subjects with Korean population. The $G^{-75}{\rightarrow}A$ mutation of APOA1 was genotyped by the polymerase chain reaction (PCR) and subsequent digestion of the PCR product using either Mspl or Mval (n=206). The observed numbers of GG, GA and AA genotypes were 132, 63 and 11, respectively. The allele frequencies of G and A were 0.794 and 0.206, respectively. The GSTM1 gene deletion was simply examined by the PCR amplification (n=106). The observed numbers of null type ($GSTM1^*0/GSTM1^*0$) and positive type were 55 and 51, respectively. The allele frequency of $GSTM1^*0$ was 0.720.

  • PDF