• Title/Summary/Keyword: Flame structure

Search Result 609, Processing Time 0.028 seconds

Flame Structure of Moderate Turbulent Combustion in Opposed Impinging Jet Combustor (대항분출 연소기의 난류화염 구조)

  • Cho, Yong-Jin;Yoon, Young-Bin;Lee, Chang-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.46-51
    • /
    • 2002
  • The measurement of velocity and stain rate field has been conducted in opposed impinging jet combustion. When a smaller diameter (5mm) orifice of pre-chamber was used, previous studies had reported that the combustion phase showed a shift from weak turbulent combustion to moderate turbulent combustion in the modified Borghi Diagram. In the case with smaller orifice diameter (5mm), NOx emission was substantially reduced by a factor 1/2 while the combustion pressure remains at the same as that in the conventional combustion. Hence, in this study, the experiment setup using PIV technique was designed to identify the relation of the strain rate distribution and NOx reduction associated with moderate turbulent combustion.

  • PDF

Effects of Fuel-Air Unmixedness on Lean Premixed Combustion Characteristics (연료-공기 비혼합도가 희박예혼합 연소 특성에 미치는 영향)

  • Kim, Dae-Hyun;Lee, Jong-Ho;Jeon, Chung-Hwan;Chang, Young-June
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.133-139
    • /
    • 2002
  • The lean premixed technique has been proven very efficient in reducing NOx emissions from gas turbine combustors. However combustion instability is susceptible to occur in lean premixed combustor. So laboratory-scale dump combustor was used to understanding the underlying mechanisms causing combustion instabilities. In this study, tests were conducted at atmospheric pressure and inlet air was up to $360^{\circ}C$ with natural gas. The observed instability was a longitudinal mode with a frequency of ${\sim}341.8Hz$. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various equivalence ratio. Combustion instability was observed to occur at higher value of equivalence ratio(>0.69). This study was performed to investigate the effects of equivalence ratio and fuel split measuring NOx and acoustic wave. The results reveal the effect of fuel-air unmixedness on lean premixed combustor.

  • PDF

Effect of H2/CO Ratio, Dilution Ratio, and Methane/Syngas Ratio on Combustion Characteristics of Syngas Turbine (H2/CO비, 희석량, 메탄/석탄가스비가 합성가스용 가스터빈의 연소특성에 미치는 영향)

  • Lee, Min Chul;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.59-60
    • /
    • 2012
  • This paper describes gas turbine combustion characteristics of synthetic gas which is mainly composed of hydrogen and carbon monoxide. The combustion characteristics such as combustion instability, NOx and CO emission, temperatures at turbine inlet, liner and dump plane, and flame structure were investigated when changing when changing $H_2:CO$ ratio, dilution ratio, and $CH_4:syngas$ ratio. From the results, quantitative relationships are derived between key aspects of combustion performance, notably NOx emission. It is concluded that NOx emission of syngas is strongly influenced by the diluent heat capacity and combustion instability. Moreover, NOx control method using diluents such as $N_2$, $CO_2$, steam is verified.

  • PDF

The Component Extraction Using Knowledge-Base from Name-Card (명함에서 지식베이스를 이용한 구성요소의 추출)

  • 이성범;남궁재찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1201-1212
    • /
    • 1993
  • This paper presents the automatically extracting method of data item from name-cards using knowledge-base. In our approach, we utilize a structural information and a relational information between data items and elements with knowledge in the name-cards. To describe a hierarchical knowledge, we uses a flame structure and we propose an algorithim of domain classification to extract item and group candidate domains from the name-cards. From the experimental results, we obtain the extraction rate, 95%, for 100 samples.

  • PDF

Electrical Properties of Organic/lnorganic Hybrid Composites for Insulation materials (유기/무기 복합 절연재료의 전기적 특성)

  • 깅상철;김현석;옥정빈;안명진;박도현;이건주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.78-83
    • /
    • 2001
  • In this work, the surface of inorganic fillers were modified with some functional groups such as stearic acid, aliphatic long chain, vinylsilane and aminosilane to control the interaction between inorganic fillers and polymer matrix. Ethylene-vinyl acetate copolymers (EVA) with various amount of vinyl-acetate content and copolyether-ester elastomer were used as polymer matrix. The addition of inorganic fillers increases flame retardancy, but results in steep drop of electrical and mechanical properties, which may be caused by the defect in the interface between organic/inorganic hybrid composites. The hybrid composites are found to show better mechanical properties and higher volume resistivities as inorganic fillers are well dispersed and have good adhesion with polymer matrix. Also, the most effective type of functional group coated on fillers depends on the chemical structure of polymer.

  • PDF

Design of Inset Microstrip Patch Antenna for Wireless Power Transmission at 2.45 GHz

  • Pradhan, Sajina;Noh, Sun-Kuk;Choi, Dong-You
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.123-128
    • /
    • 2012
  • In communication systems, there are various types of microstrip antenna that can be used for many applications. This paper mainly focuses on the simple design of an inset rectangular microstrip patch antenna to operate at a frequency of 2.45 GHz for rectenna design. The study involves using an high frequency structure simulator to design the antenna dimensions and to determine its performance. This antenna is based on a thickness of 1.6 mm flame retardant 4 (FR-4) substrate having a dielectric constant of approximately 4.7, an inset feed, and a ground plane. After simulation, the antenna performance characteristics such as its return loss, voltage standing wave ratio, gain, and radiation pattern were obtained and compared with the fabricated measured antenna.

Flamelet Modeling for Combustion Processes of Hybrid Rocket Engine (화염편 모델을 이용한 하이브리드 로켓의 연소과정 해석)

  • Lim, Jae-Bum;Kim, Yong-Mo;Yoon, Myung-Won
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.245-248
    • /
    • 2006
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. Accordingly, the recent research efforts are focused on the improvement of engine efficiency and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the flamelet model and Low Reynolds number $k-{\varepsilon}$ turbulent model is employed to reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect. Based on numerical results, the detailed discussions have been made for the effects of oxygen injection methods and oxygen injection flow rate on flame structure and regression rate in the vortex hybrid rocket engines

  • PDF

The Structure of Axisymmeric Turbulent Diffusion Flame(II) (재순환 영역이 있는 축대칭 난류 확산화염의 구조 (II))

  • 이병무;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.70-77
    • /
    • 1986
  • Turbulent mixing field with recirculating flow which is formed by injecting gaseous fuel on the main air stream is solved numerically by a finite difference method. The turbulence model for obtaining transport properties was k-.epsilon. model, which was obtained from turbulent kinetic energy and its dissipation rate. Considering the effects of streamline curvature, modified k-.epsilon model was used. Generally, Modified k-.epsilon. model makes better predictions than standard model, and from this result, it is recognized that standard model has deficiency when applied to turbulent recirculating flows, and that modified k-.epsilon. model takes into account of streamline curvature effects properly. Meanwhile, A more study will be necessary to find the reason why large differences between predicted and experimental turbulent kinetic energy exist.

The Structure of the Axisymmetric turbulent Diffusion Flame -( I ) Flow Measurement in Isothermal Field- (재순환 영역이 있는 축대칭 난류확산화염의 구조 -( I ) 비연소 유동장 측정 결과-)

  • 이병무;신현동
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.328-334
    • /
    • 1984
  • 본 연구에서는 기하학적으로는 물론이며 유동 장체가 축대칭이 되고 재순환 영역이 있는 노즐을 제작하여 우선 연구의 1차 단계로서 연소가 없을 경우 시간 평균 유속 및 난류 성분을 레이져 도플러 유속계로 비교적 정밀히 측정한후, 노즐 유체와 주위공기류와의 시간 평균 혼합특성을 구명하기 위하여 가스크로마토그라프에 의하여 농도 분포를 측정, 모델 검토를 위한 기초 데이타 제공과 실험용으로 채용한 노즐류의 구조를 구명하고저 한다. 특히 노즐유체를 수소/질소 혼합기인 경우와 공기를 사용 한 양 경우를 비교, 검토하므로써 부력효과에 대한 평가를 시도하였다.

Numerical Study on the Characteristics of Spray Combustion Processes in the DME and n-heptane Fueled Diesel-like Engine Conditions (DME 및 n-Heptane 연료의 디젤엔진 조건에서 분무연소특성 해석)

  • Yu, Yong-Wook;Suk, Jun-Ho;Lee, Sang-Kil;Kim, Yong-Mo
    • Journal of ILASS-Korea
    • /
    • v.13 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • In the present study, in order to understand the overall spray combustion characteristics of DME fuel as well as to identify the distinctive differences of DME combustion processes against the conventional hydrocarbon liquid fuels, the sequence of the comparative analysis have been systematically made for DME and n-heptane liquid fuels. To realistically represent the physical processes involved in the spray combustion, this studyemploys the hybrid breakup model, the stochastic droplet tracking model, collision model, high-pressure evaporation model, and transient flamelet model with detailed chemistry. Based on numerical results, the detailed discussions are made in terms of the autoignition, spray combustion processes, flame structure, and turbulence-chemistry interaction in the n-heptane and DME fueled spray combustion processes.

  • PDF