• 제목/요약/키워드: Flame speed

검색결과 397건 처리시간 0.026초

난류 예혼합 화염에서의 프랙탈 차원의 통계적 특성 (Statistical Characteristics of Fractal Dimension in Turbulent Prefixed Flame)

  • 이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.18-26
    • /
    • 2002
  • With the introduction of Fractal notation, various fields of engineering adopted fractal notation to express characteristics of geometry involved and one of the most frequently applied areas was turbulence. With research on turbulence regarding the surface as fractal geometry, attempts to analyze turbulent premised flame as fractal geometry also attracted attention as a tool for modeling, for the flame surface can be viewed as fractal geometry. Experiments focused on disclosure of flame characteristics by measuring fractal parameters were done by researchers. But robust principle or theory can't be extracted. Only reported modeling efforts using fractal dimension is flame speed model by Gouldin. This model gives good predictions of flame speed in unstrained case but not in highly strained flame condition. In this research, approaches regarding fractal dimension of flame as one representative value is pointed out as a reason for the absence of robust model. And as an extort to establish robust modeling, Presents methods treating fractal dimension as statistical variable. From this approach flame characteristics reported by experiments such as Da effect on flame structure can be seen quantitatively and shows possibility of flame modeling using fractal parameters with statistical method. From this result more quantitative model can be derived.

IGCC 가스터빈 운전조건에서의 석탄가스 층류화염속도에 대한 기초연구 (Numerical Investigations on Laminar Flame Speed of Syngas Flames at IGCC Gas Turbine Condition)

  • 이정원;오경택;김용모
    • 한국연소학회지
    • /
    • 제16권4호
    • /
    • pp.38-45
    • /
    • 2011
  • Coal-derived syngas has been utilized by main fuel at IGCC power plant. Research efforts for investigating the characteristics of premixed and nonpremixed flames at gas-turbine condition have been conducted. The present study has been mainly motivated to evaluate the capability of the detailed chemical kinetics to predict the syngas laminar flame speed. Special emphasis is given to the effects of pressure, temperature, syngas composition, and dilution level on the characteristics of premixed and nonpremixed flames. The predicative capability of a number of detailed mechanism for laminar flame speed is compared to experimental data. From these results, detailed kinetics of Davis et al. and Li et al. have the best conformity with the experiments in the all the case of parametric studies.

부분 예혼합 압축착화 조건에서 디젤분무의 화염특성 (Flame Characteristics of Diesel Spray in the Condition of Partial Premixed Compression Ignition)

  • 방중철;박철환
    • 한국연소학회지
    • /
    • 제17권2호
    • /
    • pp.24-31
    • /
    • 2012
  • Diesel engines exhaust much more NOx(Nitrogen Oxides) and PM(Particulate Matter) than gasoline engines, and it is not easy to reduce both NOx and PM simultaneously because of the trade-off relation between two components. This study investigated flame characteristics of the partial premixed compression ignition known as new combustion method which can reduce NOx and PM simultaneously. The investigation was performed through the analysis of the flame images taken by a high speed camera from the visible engine which is the modified single cylinder diesel engine. The results obtained through this investigation are summarized as follows; (1) The area of the luminous yellow flame was reduced due to the decrease of flame temperature and even distribution of temperature. (2) The darkish yellow flame zone caused by the shortage of the remaining oxygen after the middle stage of combustion was considerably reduced. (3) Since the ignition delay was shortened, the violent combustion did not occur and the combustion duration became shortened.

정적연소기내 유동형태가 화염전파에 미치는 영향 연구 (An Experimental Study of the Effect of Flow on Flame Propagation in a Constant-Volume Combustion Chamber)

  • 정동수;오승묵;서승우;장영준
    • 한국자동차공학회논문집
    • /
    • 제3권2호
    • /
    • pp.136-145
    • /
    • 1995
  • The aim of this study is to gain a better understanding of the effect of a flow motion on the flame development by means of an optically-accessible constant-volume combustion chamber and the visualization technique of a combustion flame. At first, the characteristics of a flame propagation are investigated in the combustion field of the two kinds of flow conditions such as a quiescent and a flowing condition, and methane-air mixture is used as fuel. Then the same investigation is performed in two flow configurations : bulk flow motion type and turbulence generating type. In this study, the combustion phenomena are analyzed by measuring the combustion pressure, flame propagation speed, mean velocity, turbulent intensity, and mass fraction burned.

  • PDF

고압에서 DME-Air 혼합기의 화염속도 측정 (Measurement of Laminar Flame Speeds of Dimethyl Ether-Air Mixtures at High Pressure)

  • 이수각;이기용
    • 한국연소학회지
    • /
    • 제19권1호
    • /
    • pp.11-16
    • /
    • 2014
  • Spherically expanding flames are used to measure flame speeds, which are derived the corresponding laminar flame speeds at zero stretch. Dimethyl Ether-Air mixtures at high pressure are studied over an extensive range of equivalence ratios. The classical shadowgraph technique is used to detect the reaction zone. In analytical methodology the optimization process using least mean squares is performed to extract the laminar flame speeds. It is seen that the laminar flame speed of DME-Air mixture with the increase of pressure decreases rapidly showing a similar trend to other hydrocarbon fuels. At pressure of 2 and 10 atm the experimental data from the present study agree well with results reported in the literature. Especially the laminar flame speeds at 2 atm are in good agreement with those calculated in numerical work over the full stoichiometric range. At elevated pressure of 12 atm the measured data are slightly slower at fuel lean condition and show close agreement at fuel rich condition when compared with the numerical results.

인화성 혼합유의 구획 화재에 의한 화염의 전파 속도 및 특성 해석 (Propagation Speed and Characteristic Analysis of Flame in Compartment Fires of Flammable Liquids)

  • 조희수;이재오;최충석
    • 한국화재소방학회논문지
    • /
    • 제29권3호
    • /
    • pp.31-36
    • /
    • 2015
  • 본 연구는 동일 비율로 휘발유와 혼합된 인화성 액체 200 ml를 축소 모의된 구획 공간에 채우고 착화시켰을 때의 특성을 해석하였다. 구획된 공간의 한 변은 2,000 mm이며, 연소가 진행된 장치의 길이는 1,000 mm이다. 휘발유와 알코올을 혼합한 물질의 화염 전파 속도가 0.7 s로 가장 빠르고, 가장 늦은 물질은 휘발유와 경유를 혼합한 물질로 1.2 s이다. 화염이 최성기에 가장 빨리 도달한 물질은 휘발유와 아세톤을 혼합한 것으로 25.5 s가 소요되었다. 또한 휘발유와 경유를 혼합한 물질은 163.7 s로 가장 늦었다. 연소의 지속 시간은 휘발유와 경유를 혼합한 물질이 332.7 s로 가장 길었으며, 가장 짧은 것은 휘발유와 시너를 혼합한 물질로 121.5 s이다. 따라서 화재 현장을 조사하는 화재조사관은 최초 목격자의 진술은 물론 화염의 특성을 종합적으로 분석할 필요가 있다.

중대사고시 수소연소에 의한 화염속도 상관식 제시 (A Suggestion of the Hydrogen Flame Speed Correlation under Severe Accidents)

  • Kang, Chang-Woo;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 1994
  • 중대사고시 고온·고압의 열수력적 현상과 증기의 억제효과를 정량화할 수 있는 수소연소에 의한 화염속도 상관식을 제시하고 보정인자들을 정의하였다. 이 상관식은 기존의 Iijima-Takeno 상관식에 중대사고시에 예상되는 수소와 증기의 농도 범위에서 증기의 억제효과를 정량화하는 인자인 증기억제율을 정의하여 추가하고, 초기 압력의 영향을 고려하는 보정효과를 변형한 것이다. 또한 기존의 화염속도 모델은 상온·대기압력에서 수행된 실험에 기초한 상관식으로 중대사고시의 고온·고압의 열수력적 현상을 올바로 모사할 수 없으며. 증기의 억제 효과를 정량화할 수 없었다. 따라서 화염의 구조를 정의하고, 해석적 분석을 통해 화염속도를 계산하였고, 이 결과를 중대사고 해석용 코드인 MAAP, HECTR의 상관식 결과와 FITS 실험자료와 비교하여 해석적 모델의 적합성을 검증하였다. 이러한 결과를 기초로 화염 속도에 대한 증기의 억제 효자를 정량화하고, 초기 온도와 압력의 영향을 보정하는 인자들을 결정하여 수소연소에 의한 간편한 형태의 화염속도 상관식을 제시하였다.

  • PDF

과농 조건에서 산소부화된 $CH_4/O_2/N_2$ 예혼합화염의 화염구조 (Flame Structure of Fuel-rich $CH_4/O_2/N_2$ Premixed Flame with Oxygen Enrichment)

  • 이기용;권영석
    • 한국연소학회지
    • /
    • 제8권2호
    • /
    • pp.1-6
    • /
    • 2003
  • Numerical simulations are conducted at atmospheric pressure in order to understand the effect of the oxygen enrichment level on structure of $CH_4/O_2/N_2$ premixed flames. Under several equivalence ratios the flame speeds are calculated and compared with those obtained from the experiments, the results of which are in good agreement. The effects of the oxygen enrichment are investigated on flames under fuel-rich conditions. As the oxygen enrichment level is increased from 0.21 to 1, the flame speed and the temperature are increased. The emission index of $CO_2$ is decreased in cases of flames for fuel rich mixtures, so the efficiency of combustion may be decreased. The maximum emission index of NO is obtained for 0.6 of the oxygen enrichment level.

  • PDF

정전기 방전에너지에 따른 LPG/공기 혼합물의 폭발특성에 관한 실험적 연구 (Experimental Investigations on Explosion Characteristics of LPG/Air Mixture by Electrostatic Discharge Energies)

  • 김남석;박달재
    • 한국안전학회지
    • /
    • 제26권6호
    • /
    • pp.26-30
    • /
    • 2011
  • Experimental investigations were performed to examine the effects of different electrostatic discharge ignition energies on LPG/air mixture explosions in an explosion chamber. The chamber consisted of 500 mm in length, with a $100{\times}100mm^2$ cross section. Three different ignition energies were used: 0.30 mJ, 46 mJ and 98 mJ. Flame propagations were recorded by a high speed video camera. The results of flame speed and pressure obtained from the different ignition energies were discussed. It was found that as the energy increased, different flame initiations occurred. This caused the time interval in both the flame and pressure developments. It was also found that the flame speed and the pressure were less sensitive to both 0.30 mJ and 46 mJ, except for the ignition energy of 98 mJ.

정적연소기를 이용한 메탄-공기 예혼합기의 자발화 연소특성에 관한 연구 (A Study on the Auto-ignition Combustion Characteristics of CH4-Air Pre-mixtures in Constant Volume Combustion Chamber)

  • 이진수;이해철;차경옥;정동수
    • 한국분무공학회지
    • /
    • 제10권2호
    • /
    • pp.41-47
    • /
    • 2005
  • Exhaust gas emissions from internal combustion engines are one of the major sources of air pollution. And. it is extremely difficult to increase gasoline engine efficiency and to reduce NOx and PM(particulate matter) simultaneously in diesel combustion. This paper offers some basic concepts to overcome the above problems. To solve the problems, a recommended technique is CAI(controlled auto-ignition) combustion. In this paper. internal EGR(exhaust gas recirculation) effect is suggested to realize CAI combustion. An experimental study was carried out to achieve CAI combustion using homogeneous premixed gas mixture in the constant volume combustion chamber(CVCC). A flame trap was used to simulate internal EGR effect and to increase flame propagation speed in the CVCC. Flame propagation photos and pressure signals were acquired to verify internal EGR effect. Flame trap creates high speed burned gas jet. It achieves higher flame propagation speed due to the effect of geometry and burned gas jet.

  • PDF