• Title/Summary/Keyword: Flame speed

Search Result 397, Processing Time 0.025 seconds

An Experimental Study on Performance and Emission Characteristics of Hydrogen Mixtures in a CNG Engine (CNG 기관의 수소혼합률 변화에 따른 성능 및 배출가스 특성에 관한 실험적 연구)

  • KIM, INGU;SON, JIHWAN;KIM, JOUNGHWA;KIM, SUNMOON;KIM, JEONGSOO;LEE, SEANGWOCK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.4
    • /
    • pp.357-364
    • /
    • 2016
  • Recently, the world faces the environmental problem such as air pollution due to harmful gas discharged from car and abnormal climate due to the green-house gases increased by the discharge of $CO_2$. Compressed Natural Gas (CNG), one of alternative for this problem, is less harmful, compared to the existing fossil fuel, as gaseous fuel, and less carbon in fuel ingredients and carbon dioxide generation rate relatively favorable more than the existing fuel. However, CNG fuel has the weakness of slow flame propagation speed and difficult fast burn. On the other hand, hydrogen does not include carbon in fuel ingredients, and does not discharge harmful gas such as CO and HC. Moreover, it has strength of quick burning velocity and ignition is possible with small ignition energy source and it's has wide Lean Flammability Limit. If using this hydrogen with CNG fuel, the characteristics of output and discharge gas is improved by the mixer's burning velocity improved, and, at the same time, is possible to have stable lean combustion with the reduction of $CO_2$ expected. Therefore, this research tries to identify the characteristics of engine and emission gas when mixing CNG fuel and hydrogen in each portion and burning them in spark igniting engine, and grasp the combustion stability and emission gas characteristics according and use it as the basic data of hydrogen-CNG premixed engine.

Characteristics of Auto-ignition and Micro-explosion for Array of Emulsion Droplets (유화액적 배열에서의 자발화와 미소폭발의 특성)

  • Jeong, In-Cheol;Lee, Kyung-Hwan;Kim, Jae-Soo
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2007
  • The auto-ignition characteristics and combustion behaviors of one-dimensional array of water-in-fuel droplets suspended in a high temperature chamber have been investigated experimentally with various droplet spacing and number of droplets. The fuels used were pure n-decane and emulsified n-decane with water contents varied from 10% to 30%. All experiments have been performed at 920 K under the atmospheric pressure. The number of droplets in an array were fixed as 3 or 5 and its spacing was varied from 3 mm to 7 mm by 1mm interval. The imaging technique with a high-speed camera has been adopted to measure the ignition delay and flame life time. The micro-explosion behaviors were also observed. As the droplet array sparing increased, the ignition delay also increased regardless of water contents. However, the life time of droplet array decreased as the droplet spacing increased. The full combustion time in array of 3 droplets was found to be longer than that for 5 droplets case due to the longer ignition delay.

Technical Review and Analysis of Ramjet/Scramjet Technology I. Ramjet Engine (Liquid Ramjet, Ducted Rocket) (램제트/스크램제트의 기술동향과 소요기술 분석 I. 램제트 엔진(액체램제트, 덕티드로켓))

  • Sung Hong-Gye;Yoon Hyun-Gull
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.1
    • /
    • pp.72-86
    • /
    • 2006
  • A technical review of current ramjet propulsion is presented. In addition to summarize the current status of ramjet technology, new key techniques like Boosting technique easily adapting total impulse of booster, flame stabilization technique with minimized ramjet combuster length, variable nozzle-inner-surface technique realizing wide flight-envelop, and thermal protection technique for long operating time are identified. Actually various Ramjet propulsion technology has been matured and expanding to both military and combined cycle application. Yet many opportunities remain to be challenged by future generations of explorers to utilize s typical ramjet propulsion system for multi-purpose(multi-platform and multi-target) missiles, for example, American JSSCM and Russian Yakhont missiles, improving both reliability of techniques and downsizing development cost of new propulsion system.

The Effects of Fuel Temperature on the Spray and Combustion Characteristics of a DISI Engine (직접분사식 가솔린 엔진에서 연료 온도에 따른 팬형 분무 및 연소 특성의 변화)

  • Moon, Seok-Su;Abo-Serie, Essam;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.103-111
    • /
    • 2006
  • The spray behavior of direct-injection spark-ignition(DISI) engines is crucial for obtaining the required mixture distribution for optimal engine combustion. The spray characteristics of DISI engines are affected by many factors such as piston bowl shape, air flow, ambient temperature, injection pressure and fuel temperature. In this study, the effect of fuel temperature on the spray and combustion characteristics was partially investigated for the wall-guided system. The effect of fuel temperature on the fan spray characteristics was investigated in a steady flow rig embodied in a wind tunnel. The shadowgraphy and direct imaging methods were employed to visualize the spray development at different fuel temperatures. The microscopic characteristics of spray were investigated by the particle size measurements using a phase Doppler anemometry(PDA). The effect of injector temperature on the engine combustion characteristics during cold start and warming-up operating conditions was also investigated. Optical single cylinder DISI engine was used for the test, and the successive flame images captured by high speed camera, engine-out emissions and performance data have been analyzed. This could give the way of forming the stable mixture near the spark plug to achieve the stable combustion of DISI engine.

The interaction between helium flow within supersonic boundary layer and oblique shock waves

  • Kwak, Sang-Hyun;Iwahori, Yoshiki;Igarashi, Sakie;Obata, Sigeo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.75-78
    • /
    • 2004
  • Various jet engines (Turbine engine family and RAM Jet engine) have been developed for high speed aircrafts. but their application to hypersonic flight is restricted by principle problems such as increase of total pressure loss and thermal stress. Therefore, the development of next generation propulsion system for hypersonic aircraft is a very important subject in the aerospace engineering field, SCRAM Jet engine based on a key technology, Supersonic Combustion. is supposed as the best choice for the hypersonic flight. Since Supersonic Combustion requires both rapid ignition and stable flame holding within supersonic air stream, much attention have to be given on the mixing state between air stream and fuel flow. However. the wider diffusion of fuel is expected with less total pressure loss in the supersonic air stream. So. in this study the direction of fuel injection is inclined 30 degree to downstream and the total pressure of jet is controlled for lower penetration height than thickness of boundary layer. Under these flow configuration both streams, fuel and supersonic air stream, would not mix enough. To spread fuel wider into supersonic air an aerodynamic force, baroclinic torque, is adopted. Baroclinic torque is generated by a spatial misalignment between pressure gradient (shock wave plane) and density gradient (mixing layer). A wedge is installed in downstream of injector orifice to induce an oblique shock. The schlieren optical visualization from side transparent wall and the total pressure measurement at exit cross section of combustor estimate how mixing is enhanced by the incidence of shock wave into supersonic boundary layer composed by fuel and air. In this study non-combustionable helium gas is injected with total pressure 0.66㎫ instead of flammable fuel to clarify mixing process. Mach number 1.8. total pressure O.5㎫, total temperature 288K are set up for supersonic air stream.

  • PDF

Applicability of Fuel Supply System for HCNG Engine (HCNG 엔진용 연료시스템의 적용성 평가)

  • Lee, Sungwon;Lim, Gihun;Park, Cheolwoong;Choi, Young;Kim, Changgi;Lee, Janghee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.146-153
    • /
    • 2013
  • CNG buses has contributed to improve air quality in cities. But it is difficult to meet the next emission regulations such as EURO-VI without the help of additional post-processing device. Hydorgen has higher flame speed and lower combustion temperature that make it thermal efficiency increase with leaner operation. Using hydrogen natural gas blend (HCNG) fuel is promising technology which can reduce $NO_x$ and $CO_2$ emissions for a natural gas vehicle. However, fuel flow rate of HCNG should be increased since hydrogen's energy density per volume is much smaller than natural gas. In the present study, the characteristics of fuel supply system and its applicability were evaluated in a heavy duty natural gas engine. The results showed that the potential of fuel pressure regulator and fuel metering valve had enough capacity with HCNG. Employed mixer did not affect the distribution characteristics of mixture.

The development of the escape light control system (유도등 제어시스템의 개발)

  • Kim, Dong-Ook;Mun, Hyun-Wook;Lee, Ki-Yeon;Kim, Dong-Woo;Gil, Hyung-Jun;Kim, Hyang-Kon;Chung, Young-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.52-58
    • /
    • 2009
  • When a fire breaks out, it is frequent that large sized miserable death is happened by seriousness of poisonous gas and peculiarity of space because the building construction is recently more complex and diverse. So early countermeasure in preparation for evacuation escape linked directly with a loss of lives is pressing. Because escape light that mark fixing one-way of existing way is not efficiently extricated refugees from dangers when a fire breaks out, construction of system that can extricate refugees from dangers and suppress early a fire by grasping correctly fire point is required urgently. When a fire breaks out, all escape lights connected with fire sensor and reception group which have ill aiming in these point will lead people to safe emergency entrance of opposite direction of place that a fire is broken out after being calculated the direction and speed of flame and smoke. There is the purpose of my research in development of artificial intelligent directional escape light that can mark direction to most suitable pull-out and assist in early extinguishing a fire.

A Study on the Full Load Performance and Emission Characteristics with Turbo-charger Change in a HCNG Engine (HCNG 엔진의 터보차저 변경에 따른 전부하 출력 및 배출가스 특성 연구)

  • Park, Cheolwoong;Kim, Changgi;Lim, Gihun;Lee, Sungwon;Choi, Young;Lee, Sunyoup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.8-14
    • /
    • 2013
  • Hydrogen-natural gas blends(HCNG) engine is optimizing technology of performance and emission characteristics with use of hydrogen's fast flame speed and wide flammability limit. As lean-burn limit is extended, the improvement in thermal efficiency and harmful emissions can be achieved. However, the extension of lean-burn limit under a wide open throttle operation point could be realized with the increase in boosting capacity in a lean-burn engine with turbo-charging system. In the present study, the power output characteristics of HCNG engine with turbo-charger change is assessed and feasibility of the increase in boosting capacity is evaluated. The turbo-charger design with high efficiency at higher flow rate rather than higher boosting pressure makes efficient operation possible at relatively rich mixture condition.

A Fire Prevention System of the Nacelle of Wind Turbine Generator System Based on Broadband Powerline Communication (광대역 전력선통신 기반 풍력발전기 너셀 내부 화재예방시스템)

  • Kim, Hyun-Sik;Ju, Woo-Jin;Kang, Seog Geun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1229-1234
    • /
    • 2018
  • In this paper, a fire prevention system based on a broadband powerline communication (PLC) system is implemented and a demonstration experiment is carried out to prevent from or promptly dealing with possible fires within the nacelle of a wind turbine generator system (WTGS). For this purpose, an inductive coupler having satisfactory attenuation characteristic in the frequency region for high-speed PLC is also manufactured. It is confirmed that the implemented system can monitor the environmental change inside the nacelle in real time by transmitting various information obtained by the sensors such as temperature, flame, and smoke sensor installed in the nacelle and thermal image recorded by a thermal camera to the ground control center through the PLC system. Therefore, it is, considered that the implemented system will significantly improve the reliability of the fire monitoring and prevention system of the WTGS in conjunction with the existing safety system.

Flow Characteristics in a Supersonic Combustor with a Configuration of a Cavity (초음속 연소기 내 공동 형상에 따른 유동 특성)

  • Yim, Geon Wook;Roh, Tae-Seong;Lee, Hyoung Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • The cavity inside the combustor increases the mixing efficiency of fuel and air by inducing a oscillation of the flow and the recirculation area with a low speed, and enables continuous combustion by maintaining the flame. In this study, the characteristics of the internal flow by change in the shape parameters of the cavity were analyzed through experiments and two-dimensional computational analysis. It was observed that the flow in the supersonic combustor was greatly influenced by various shape parameters of cavity besides L/D. Even with the same L/D, it was confirmed that the flow type varies depending on the depth of the cavity, either open or closed type, and the aft ramp angle of the cavity and the height of the combustor also affect the flow characteristics. As a result, the change in the shape parameters of the cavity had a great influence on the total pressure loss.