• Title/Summary/Keyword: Flame extinction time

Search Result 34, Processing Time 0.019 seconds

Characteristization of Spray Combustion and Turbulent Flame Structures in a Typical Diesel Engine Condition (디젤 엔진 운전 조건에서 분무 연소 과정과 난류 화염 구조 특성에 대한 해석)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.29-36
    • /
    • 2009
  • Simulation is performed to analyze the characteristics of turbulent spray combustion in a diesel engine condition. An extended Conditional Moment Closure (CMC) model is employed to resolve coupling between chemistry and turbulence. Relevant time and length scales and dimensionless numbers are estimated at the tip and the mid spray region during spray development and combustion. The liquid volume fractions are small enough to support validity of droplets assumed as point sources in two-phase flow. The mean scalar dissipation rates (SDR) are lower than the extinction limit to show flame stability throughout the combustion period. The Kolmogorov scales remain relatively constant, while the integral scales increase with decay of turbulence. The chemical time scale decreases abruptly to a small value as ignition occurs with subsequent heat release. The Da and Ka show opposite trends due to variation in the chemical time scale. More work is in progress to identify the spray combustion regimes.

  • PDF

Quantitative Measurements of Soot Particles in a Laminar Diffusion Flame Using a LII/LIS Technique (LII/LIS 기법을 이용한 층류확산화염 매연입자의 정량화)

  • Chung, J.W.;Lee, W.;Han, Y.T.;Kim, B.S.;Lee, C.B.;Kim, D.J.;Lee, K.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.113-121
    • /
    • 2002
  • The distribution of volume fraction, mean diameter and number density of soot particles are measured quantitatively in a co-flow ethylene diffusion flame using a simultaneous LII/LIS measurement technique. The LII/LIS system and the measured values are, respectively, calibrated and evaluated by comparing to the informations obtained from laser light. extinction/scattering experiments, LII signal shows some sensitivity to the laser light intensity when laser power density exceeds a certain value(threshold). It is also found that there is an optimal laser intensity and a delay time in order to obtain the best result using the simultaneous LII/LIS measurement technique.

  • PDF

Experimental Study on Combustion Characteristics of a Swirl-stabilized Conical Burner (스월 예혼합 버너의 연소 특성에 관한 실험적 연구)

  • Kim, Gu;Cho, Ju Hyeong;Lee, Dong Suk;Kim, Han Seok;Sohn, Chae Hoon;Lee, Sang Min;Kim, Min Kuk;Ahn, Kook Young
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.3
    • /
    • pp.1-7
    • /
    • 2014
  • Experimental study has been carried out to understand combustion characteristics of a swirl-stabilized premixed gas turbine combustor for power generation. $NO_x$ and CO emissions, extinction limit, pressure loss, and temperature distribution were measured for various operating conditions. Results show that, with increasing inlet air temperature, $NO_x$ is increased due to a higher adiabatic flame temperature while CO is increased or decreased for low or high A/F ratio regime, respectively. depending on the flame location. With decreasing load from the design condition, $NO_x$ is decreased as thermal load is reduced. With further decreasing load, however, $NO_x$ is increased due to a longer residence time. CO is decreased and then increased with decreasing load. Flame extinction limit is extended with increasing inlet air temperature as the recirculation strength is enhanced.

Quantitative Measurements of Soot Particles in a Laminar Diffusion Flame Using a LII/LIS Technique (LII/LIS 기법을 이용한 층류확산화염 매연입자의 정량화)

  • Chung, J.W.;Lee, W.;Han, Y.T.;Kim, B.S.;Lee, C.B.;Kim, D.J.;Lee, K.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2003
  • In this study, the quantification of soot particles in laminar diffusion flame with LII/LIS methods was performed. In these quantification, soot diameter, number density and volume fraction are included. For the quatification of soot particles, calibration tests are needed and the development of algorithm has to be performed. So, in this study, extinction and scattering test at co-flow burner were performed to acquire calibration data. And algorithm for LII/LIS simultaneous measurement for the quantification of soot were developed. The algorithm, which was the quantification of simultaneous photographing using one ICCD camera, to measure LII/LIS signal simultaneously, the best fitted light intensity and acquisition time was needed.

  • PDF

CFD ANALYSIS FOR HYDROGEN FLAME ACCELERATION IN THE IRWST ANNULUS TEST FACILITY (IRWST 환형관 실험장치 내의 수소화염 가속현상에 대한 CFD 해석 연구)

  • Kang, H.S.;Ha, K.S.;Kim, S.B.;Hong, S.W.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.75-86
    • /
    • 2012
  • We developed a preliminary CFD analysis methodology to predict a pressure build up due to hydrogen flame acceleration in the APR1400 IRWST on the basis of CFD analysis results for test data of hydrogen flame acceleration in a scaled-down test facility performed by Korea Atomic Energy Research Institute. We found out that ANSYS CFX-13 with a combustion model of the so-called turbulent flame closure and a model constant of A = 5.0, a grid model with a hexahedral cell length of 5.0 mm, and a time step size of $1.0{\times}10^{-5}$ s can be a useful tool to predict the pressure build up due to the hydrogen flame acceleration in the test results. Through the comparison of the simulated results with the test results, we found out that the proposed CFD analysis methodology enables us to predict the peak pressure within an error range of about ${\pm}29%$ for the hydrogen concentration of 19.5%. However, the error ranges of the peak pressure for the hydrogen concentration of 15.4% and 18.6% were about 66% and 51%, respectively. To reduce the error ranges in case of the hydrogen concentration of 15.4% and 18.6%, some uncertainties of the test conditions should be clarified. In addition, an investigation for a possibility of flame extinction in the test results should be performed.

On the Origin of Oscillatory Instabilities in Diffusion Flames (확산화염의 진동불안성의 기원에 대해서)

  • Kim, Jong-Soo
    • Journal of the Korean Society of Combustion
    • /
    • v.10 no.3
    • /
    • pp.25-33
    • /
    • 2005
  • Fast-time instability is investigated for diffusion flames with Lewis numbers greater than unity by employing the numerical technique called the Evans function method. Since the time and length scales are those of the inner reactive-diffusive layer, the problem is equivalent to the instability problem for the $Li\tilde{n}\acute{a}n#s$ diffusion flame regime. The instability is primarily oscillatory, as seen from complex solution branches and can emerge prior to reaching the upper turning point of the S-curve, known as the $Li\tilde{n}\acute{a}n#s$ extinction condition. Depending on the Lewis number, the instability characteristics is found to be somewhat different. Below the critical Lewis number, $L_C$, the instability possesses primarily a pulsating nature in that the two real solution branches, existing for small wave numbers, merges at a finite wave number, at which a pair of complex conjugate solution branches bifurcate. For Lewis numbers greater than $L_C$, the solution branch for small reactant leakage is found to be purely complex with the maximum growth rate found at a finite wave number, thereby exhibiting a traveling nature. As the reactant leakage parameter is further increased, the instability characteristics turns into a pulsating type, similar to that for L < $L_C$.

  • PDF

Effects of CO2 Addition in Downstream Interaction between 2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합화염 사이의 후류상호작용에 있어서 CO2 첨가 효과)

  • Keel, Sang In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.29-36
    • /
    • 2013
  • Numerical study was conducted to clarify effects of added $CO_2$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced. The most discernible difference between the two with and without having $CO_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the (H, O, OH)-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with relatively short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $CO_2$ suppressed flame stabilization. Particularly this phenomenon was appreciable at flame conditions which lean and rich extinction boundary was merged. The detailed discussion of chemical effects of added $CO_2$ was addressed to the present downstream interaction.

The Effect of Radiative Heat Flux on Dynamic Extinction in Metalized Solid Propellants (복사열전달이 고체 추진제의 동적소화에 미치는 영향)

  • Jeong, Ho Geol;Lee, Chang Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.2
    • /
    • pp.72-79
    • /
    • 2003
  • A numerical calculation was conducted to estimate and to elucidate the role of the radiative heat flux from metal particles(Al, $Al_2O_3$) on the dynamic extinction of solid propellant rocket where the rapid depressurization took place. Anon-linear flame modeling implemented by the residence time modeling for metalized propellant was adopted to evaluate conductive heat flux to the propellant surface. The radiative heat feed back was calculated with the aid of a modified comvustion-flow model as well. The calculation results with the propellant of AP:Al:CTPB=76:10:14 had revealed that the radiative heat flux is approximately 5~6% of total flux at the critical depressurization rate regardless of chamber geometry (open or confined chamber). It was also found that the dynamic extinction in open geometry could be predicted at the depressurization rate about 45% larger with radiative heat feedback than without radiation. Thus, it should be claimed that even a small amount of radiative flux 5~6% could produce a big error in predicting the critical depressurization rate of the metalized propellant combustion.

A Study on the Development of a Low-cost Device for Measuring the Optical Smoke Density (광학적 연기밀도 측정을 위한 저가형 장치의 개발에 관한 연구)

  • Kim, Bong-Jun;Cho, Jae-Ho;Hwang, Cheol-Hong;Park, Seul-Hyun
    • Fire Science and Engineering
    • /
    • v.29 no.4
    • /
    • pp.81-88
    • /
    • 2015
  • A low-cost device using the light-extinction method was developed to measure the optical smoke density in various fire experiments in the present study. The relative measurement accuracy of low-cost device was evaluated through the comparison of optical density measured by a high-cost standard device consisting of He-Ne laser, photo detector and various optical components. The low-cost device was composed of laser module, photocell and acrylic board. From the experiments using a smoke generator can be easily adjusted the smoke concentration, it was found that the low-cost device could measure the smoke density within the range of ${\pm}10%$, compared to the standard device. In addition, the reliability of low-cost device was also confirmed in the experiment using a polyethylene flame. Finally, it is expected that the low-cost device developed with real-time measurement and simple installation for measuring the smoke density will be used instead of the high-cost standard device.

Fire Resistance and Thermal Stability Study of Fire-Retarded Polypropylene Systems by Using Cone Calorimeter and Thermogravimetry (콘 칼로리미터와 TGA를 이용한 할로겐 계통의 난연제를 첨가한 폴리프로필렌 수지의 난연성 및 열 안정성에 관한 연구)

  • 곽성복;정찬화;남재도;김준형;최미애
    • Polymer(Korea)
    • /
    • v.24 no.6
    • /
    • pp.777-786
    • /
    • 2000
  • Fire resistance and thermal stability of polypropylene composite systems were investigated by using several halogenated fire-retardants such as decabromodiphenyl oxide (DBDPO) and chlorinated paraffin wax (CPW). The fire resistance of composite systems was thoroughly examined by measuring limited oxygen index (LOI, ASTM D2863, ISO 4589) and characteristic properties of cone calorimetry(ASTM E1354, ISO 5660) heat release rates (HRR), time to ignition (TTI), total heat release (THR), effective heat of combustion (EHC), mass loss rates, etc. Comparing the cone calorimetry experimental results of the halogen flame retardants, DBDPO exhibited twice higher efficiency than CPW in polypropylene systems, and the LOI also showed similar trends to cone calorimetry. The thermo-oxidative stability of the composite systems was increased about 30-5$0^{\circ}C$ in thermogravimetry analysis.Collectively, the combustion, extinction and thermally-stable characteristics of flame retardants were identified in this study.

  • PDF