• 제목/요약/키워드: Flame extinction

Search Result 215, Processing Time 0.022 seconds

First Moment Closure Simulation of Floating Turbulent Premixed Flames in Stagnation Flows (정체 유동장에 떠있는 난류 예혼합 화염의 일차 모멘트 닫힘 모사)

  • Lee, Eun-Ju;Huh, Kang-Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.122-132
    • /
    • 2000
  • Computational fluid dynamic simulation is performed for the floating turbulent premixed flames stabilized in stagnation flows of Cho et al. [1] and Cheng and Shepherd [2]. They are both in the wrinkled flamelet regime far from the extinction limit with $u'/S^{0}_{L}$ less than unity. The turbulent flux is given in the first moment closure as a sum of the classical gradient flux due to turbulent motions and the countergradient flux due to thermal expansion. The parameter $N_{B}'s$ are greater than unity with the countergradient flux dominant over the gradient flux. The countergradient flux is assumed to be zero in $\bar{c}<0.05$. The flame surface density is modeled as a symmetric parabolic function with respect to $\bar{c}$. The product of the maximum flame surface density and the mean stretch factor is considered as a tuning constant to match the flame location. Good agreement is achieved with the measured $\tilde{w}$ and $\bar{c}$ profiles along the axis in both flames.

  • PDF

Design of a Combustion Chamber for Studying the Combustion Characteristics of Counterflow Flames at Elevated Pressure (압력변화에 따른 대향류 화염 연소특성 연구를 위한 가압 연소실 설계)

  • AHN, YEONG JONG;KU, JAE WON;CHOI, SUN;KOO, JAYE;KWON, OH CHAE
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.3
    • /
    • pp.315-321
    • /
    • 2017
  • A combustion chamber is designed and fabricated for studying the combustion characteristics of counterflow flames at elevated pressure and establishing the fundamental combustion database of counterflow flames. The combustion chamber design aims to allow the maximum operating pressure of 11 bar and be able to conduct flame visualization and the measurements of flame extinction limits, flame temperature and combustion emissions at elevated pressure. Preliminary tests for counterflow nonpremixed $CH_4-NH_3-N_2$/air flames at 1-3 bar have been conducted, and the results confirm the proper operation of the designed chamber.

Introduction of Ultraviolet/Infrared Flame Detector and Method for False Detection Prevention (자외선/적외선 불꽃감지기 소개 및 오동작 방지를 위한 연구)

  • Lim, Byung-Hyun;Ko, Nak-Yong;Hwang, Jong-Sun;Kim, Yeong-Min;Kim, Jong-Man
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.8-11
    • /
    • 2003
  • We propose that when combustible burn with contain carbon, introduce fire detector with sensor of private-use detectable light energy as infrared and ultraviolet in energy of electromagnetic-wave type radiate from flame, method for correct discrimination to resemble fire produce false alarm of detector such as sun light, hot object radiation, are welding. This research using infrared sensor is pyroelectric infrared sensor based black body radiation theory. Ultraviolet sensor is uv Tron using gas multiplication effect to current discharge and photoelectric effect of metal. To have high sensibility and to gain proper output voltage, it has high responsive performance. This research introduced UV/IR compound type flame detector and proposed method of false alarm reduced to resemble fire. The result propres the prevention and extinction of fire technique degree, certificated operation of detector.

  • PDF

An Experimental Study of Extinguishiment of Purely Buoyant Diffusion Flame Using Water Drops (수적을 이용한 순수확산화염의 소화에 관한 실험적 연구)

  • Jang, Yong-Jae;Kim, Myeong-Bae;Kim, Jin-Guk
    • 연구논문집
    • /
    • s.24
    • /
    • pp.41-48
    • /
    • 1994
  • This experimental study deals with the extinguishiment characteristics of an oil pool flame using the water spray. The water through the six different atomizers is ejected over the freely burning pool flame in the quiescent surrounding air. Injection direction is vertical to the surface of oil in a small tank with a diameter of 100mm and a height of 10mm. In order to estimate quantitatively the extinction, the burning rate as well as the effective water flux are measured. The effective water flux is the amount of the water which reach the pool from the nozzle. The burning rate with the water spray increases until the injection pressure increases to reach some value, which gives the maximum burning rate, while the effective water flux without the flame decreases or does not change according to increasing of the injection pressure. This maximum burning rate is greater than 2.5 times of burning rate of the fire without the water spray. As a matter of the extinguishiment, it is found that the water drops of which size is too small can not extinguish the fire because too small drops does not reach the fuel surface.

  • PDF

Measurements of Soot Volume Fraction Using Laser Induced Incandescence (레이저 유도 백열법을 이용한 화염 내부 매연 농도 측정)

  • Lee, Seung;Lee, Sang-Hup;Lee, Byeong-Jun;Hahn, Jae-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.725-732
    • /
    • 2000
  • Laser induced incandescence (LII) method is frequently used to measure soot volume fraction in flames. In this study, experiments were performed to measure soot volume fraction in coaxial diffusion flame using LII method and calibrated with laser scattering/extinction method. The effects of laser intensity (>$1{\times}10^8W/cm^2$), laser wavelength (532nm, 1064nm) and detection wavelength (400nm, 600nm) on the LII signal were investigated. On the range of $4{\times}10^8{\sim}8{\times}10^8W/cm^2$ there were no effects of laser intensity on LII signal. Except these ranges, LII signal was increased with laser intensity. For the long gate width, the LII signals of the higher laser intensity (>${\vartheta}(GW/cm^2)$) cases had better correlation with soot volume fraction which were measured by laser extinction method compared with lower laser intensity cases. The errors of 2-dimensional cases at the calibration height were approximately 50% regardless of laser wavelength.

Combustion Characteristics of the Miao-Gravity Condition (미소중력장에서의 연소특성 연구)

  • Lee, Keun-Oh;Lee, Kyeong-Ook
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.4
    • /
    • pp.66-70
    • /
    • 2002
  • The transient soot distributions within the region bounded by the droplet surface and the flame were measured using a full-filed light extinction technique and subsequent tomographic inversion using Abel transforms. The soot volume fraction results for n-heptane droplets represent the first quantitative assessment of the degree of sooting for isolated droplets burning under microgravity condition. The absence of buoyancy(which produces longer residence times) and the effects of thermophoresis produce a situation in which a significant concentration of soot is produced and accumulated into a soot-cloud. Results indicate that indeed the soot concentration within the microgravity droplet flames(with maximum soot volume fractions as high as ~60ppm) are significantly higher than corresponding values that are reports for normal-gravity flames. This increase in likely due to longer residence times and thermophoretic effects that manifested under microgravity conditions.

CFD ANALYSIS FOR HYDROGEN FLAME ACCELERATION IN THE IRWST ANNULUS TEST FACILITY (IRWST 환형관 실험장치 내의 수소화염 가속현상에 대한 CFD 해석 연구)

  • Kang, H.S.;Ha, K.S.;Kim, S.B.;Hong, S.W.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.75-86
    • /
    • 2012
  • We developed a preliminary CFD analysis methodology to predict a pressure build up due to hydrogen flame acceleration in the APR1400 IRWST on the basis of CFD analysis results for test data of hydrogen flame acceleration in a scaled-down test facility performed by Korea Atomic Energy Research Institute. We found out that ANSYS CFX-13 with a combustion model of the so-called turbulent flame closure and a model constant of A = 5.0, a grid model with a hexahedral cell length of 5.0 mm, and a time step size of $1.0{\times}10^{-5}$ s can be a useful tool to predict the pressure build up due to the hydrogen flame acceleration in the test results. Through the comparison of the simulated results with the test results, we found out that the proposed CFD analysis methodology enables us to predict the peak pressure within an error range of about ${\pm}29%$ for the hydrogen concentration of 19.5%. However, the error ranges of the peak pressure for the hydrogen concentration of 15.4% and 18.6% were about 66% and 51%, respectively. To reduce the error ranges in case of the hydrogen concentration of 15.4% and 18.6%, some uncertainties of the test conditions should be clarified. In addition, an investigation for a possibility of flame extinction in the test results should be performed.

Effects of CO2 Addition in Downstream Interaction between 2-Air and CO-Air Premixed Flames (H2-공기와 CO-공기 예혼합화염 사이의 후류상호작용에 있어서 CO2 첨가 효과)

  • Keel, Sang In;Park, Jeong
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.4
    • /
    • pp.29-36
    • /
    • 2013
  • Numerical study was conducted to clarify effects of added $CO_2$ for the downstream interaction between $H_2$-air and CO-air premixed flames in counterflow configuration. The reaction mechanism adopted was Davis model which had been known to be well in agreement with reliable experimental data. The results showed that both lean and rich flammable limits were reduced. The most discernible difference between the two with and without having $CO_2$ addition into $H_2$-air and CO-air premixtures was two flammable islands for the former and one island for the latter at high strain flame conditions. Even a small amount of $H_2$, in which $H_2$-air premixed flame cannot be sustained by itself, participates in CO oxidation, thereby altering the CO-oxidation reaction path from the main reaction route $CO+O_2{\rightarrow}CO_2+O$ with a very long chemical time in CO-air flame to the (H, O, OH)-related reaction routes including $CO+OH{\rightarrow}CO_2+H$ with relatively short chemical times. This intrinsic nature alters flame stability maps appreciably. The results also showed that chemical effects of added $CO_2$ suppressed flame stabilization. Particularly this phenomenon was appreciable at flame conditions which lean and rich extinction boundary was merged. The detailed discussion of chemical effects of added $CO_2$ was addressed to the present downstream interaction.

Characteristization of Spray Combustion and Turbulent Flame Structures in a Typical Diesel Engine Condition (디젤 엔진 운전 조건에서 분무 연소 과정과 난류 화염 구조 특성에 대한 해석)

  • Lee, Young-J.;Huh, Kang-Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.29-36
    • /
    • 2009
  • Simulation is performed to analyze the characteristics of turbulent spray combustion in a diesel engine condition. An extended Conditional Moment Closure (CMC) model is employed to resolve coupling between chemistry and turbulence. Relevant time and length scales and dimensionless numbers are estimated at the tip and the mid spray region during spray development and combustion. The liquid volume fractions are small enough to support validity of droplets assumed as point sources in two-phase flow. The mean scalar dissipation rates (SDR) are lower than the extinction limit to show flame stability throughout the combustion period. The Kolmogorov scales remain relatively constant, while the integral scales increase with decay of turbulence. The chemical time scale decreases abruptly to a small value as ignition occurs with subsequent heat release. The Da and Ka show opposite trends due to variation in the chemical time scale. More work is in progress to identify the spray combustion regimes.

  • PDF

Quantitative Measurements of Soot Particles in a Laminar Diffusion Flame Using a LII/LIS Technique (LII/LIS 기법을 이용한 층류확산화염 매연입자의 정량화)

  • Chung, J.W.;Lee, W.;Han, Y.T.;Kim, B.S.;Lee, C.B.;Kim, D.J.;Lee, K.H.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2003
  • In this study, the quantification of soot particles in laminar diffusion flame with LII/LIS methods was performed. In these quantification, soot diameter, number density and volume fraction are included. For the quatification of soot particles, calibration tests are needed and the development of algorithm has to be performed. So, in this study, extinction and scattering test at co-flow burner were performed to acquire calibration data. And algorithm for LII/LIS simultaneous measurement for the quantification of soot were developed. The algorithm, which was the quantification of simultaneous photographing using one ICCD camera, to measure LII/LIS signal simultaneously, the best fitted light intensity and acquisition time was needed.

  • PDF