First Moment Closure Simulation of Floating Turbulent Premixed Flames in Stagnation Flows

정체 유동장에 떠있는 난류 예혼합 화염의 일차 모멘트 닫힘 모사

  • 이은주 (포항공과대학교 기계공학과 대학원) ;
  • 허강열 (포항공과대학교 기계공학과)
  • Published : 2000.05.26

Abstract

Computational fluid dynamic simulation is performed for the floating turbulent premixed flames stabilized in stagnation flows of Cho et al. [1] and Cheng and Shepherd [2]. They are both in the wrinkled flamelet regime far from the extinction limit with $u'/S^{0}_{L}$ less than unity. The turbulent flux is given in the first moment closure as a sum of the classical gradient flux due to turbulent motions and the countergradient flux due to thermal expansion. The parameter $N_{B}'s$ are greater than unity with the countergradient flux dominant over the gradient flux. The countergradient flux is assumed to be zero in $\bar{c}<0.05$. The flame surface density is modeled as a symmetric parabolic function with respect to $\bar{c}$. The product of the maximum flame surface density and the mean stretch factor is considered as a tuning constant to match the flame location. Good agreement is achieved with the measured $\tilde{w}$ and $\bar{c}$ profiles along the axis in both flames.

Keywords