• 제목/요약/키워드: Flame detection

검색결과 197건 처리시간 0.019초

점멸성 비화염 검출을 제거하는 웨이블릿변환 기반의 컬러영상 화염 검출 방법 (A Color Video Flame Detection Method based on Wavelet Transform to Remove Flickering Non-Flame Detection)

  • 누완;이현술;김원호
    • 한국위성정보통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.89-94
    • /
    • 2013
  • 본 논문은 컬러 영상에서 화염검출 시 주기적으로 점멸하는 비화염 물체 검출을 제거하기 위해 웨이블렛 변환을 이용한 화염 검출 알고리즘을 제안한다. 기존 화염검출 알고리즘에서는 화염의 색상과 시간적인 변화와 공간적인 변화를 분석하고 이들을 조합하여 화염을 판정한다. 하지만 자동차 경광등, 방향지시등과 같이 점멸하면서 화염과 비슷한 특성을 보이는 물체를 화염으로 검출하는 문제점이 있다. 본 논문은 주기적으로 점멸하면서 화염과 비슷한 특성을 보이는 비화염 요소의 주기성을 판별하여 오검출을 감소시킨다. 제안하는 알고리즘은 화염의 색상과 영상 차분 기법으로 화염 후보영역을 선정하고 선정된 후보영역에 대하여 웨이블렛 변환 계수를 분석하여 주기성을 갖는 오검출 요소를 포함한 비화염 영역을 제거하는 알고리즘을 제안한다. 제안된 알고리즘의 모의실험 결과, 주기성을 갖는 비화염 영역을 제거하였고 97.9%의 검출율과 7.3%의 낮은 오검출율 성능을 확인하였다.

불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조 (Deep Learning Structure Suitable for Embedded System for Flame Detection)

  • 라승탁;이승호
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.112-119
    • /
    • 2019
  • 본 논문에서는 불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조를 제안한다. 제안하는 딥러닝 구조의 불꽃 감지 과정은 불꽃 색깔 모델을 사용한 불꽃 영역 검출, 불꽃 색깔 특화 딥러닝 구조를 사용한 불꽃 영상 분류, 검출된 불꽃 영역의 $N{\times}N$ 셀 분리, 불꽃 모양 특화 딥러닝 구조를 사용한 불꽃 영상 분류 등의 4가지 과정으로 구성된다. 첫 번째로 입력 영상에서 불꽃의 색만을 추출한 다음 레이블링하여 불꽃 영역을 검출한다. 두 번째로 검출된 불꽃 영역을 불꽃 색깔에 특화 학습된 딥러닝 구조의 입력으로 넣고, 출력단의 불꽃 클래스 확률이 75% 이상에서만 불꽃 영상으로 분류한다. 세 번째로 앞 단에서 75% 미만 불꽃 영상으로 분류된 영상들의 검출된 불꽃 영역을 $N{\times}N$ 단위로 분할한다. 네 번째로 $N{\times}N$ 단위로 분할된 작은 셀들을 불꽃의 모양에 특화 학습된 딥러닝 구조의 입력으로 넣고, 각 셀의 불꽃 여부를 판단하여 50% 이상의 셀들이 불꽃 영상으로 분류될 경우에 불꽃 영상으로 분류한다. 제안된 딥러닝 구조의 성능을 평가하기 위하여 ImageNet의 불꽃 데이터베이스를 사용하여 실험하였다. 실험 결과, 제안하는 딥러닝 구조는 기존의 딥러닝 구조보다 평균 29.86% 낮은 리소스 점유율과 8초 빠른 불꽃 감지 시간을 나타내었다. 불꽃 검출률은 기존의 딥러닝 구조와 비교하여 평균 0.95% 낮은 결과를 나타내었으나, 이는 임베디드 시스템에 적용하기 위해 딥러닝 구조를 가볍게 구성한데서 나온 결과이다. 따라서 본 논문에서 제안하는 불꽃 감지를 위한 딥러닝 구조는 임베디드 시스템 적용에 적합함이 입증되었다.

DSP Embedded Early Fire Detection Method Using IR Thermal Video

  • Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권10호
    • /
    • pp.3475-3489
    • /
    • 2014
  • Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.

화재 조기 인식을 위한 화염 및 연기 검출 알고리즘 개발 (Development of Flame and Smoke Detection for Early Fire Recognition)

  • 박장식;김대경;최수영;이영성
    • 한국화재소방학회논문지
    • /
    • 제22권4호
    • /
    • pp.27-32
    • /
    • 2008
  • 본 논문에서는 화재의 조기 감지를 위하여 카메라 입력영상으로부터 화염과 연기를 검출하는 알고리즘을 제안한다. 화염과 연기는 특정 색분포를 가지며 지속적으로 형태가 변화하며 움직인다. 제안하는 화염검출 알고리즘은 화염의 색분포와 영상 프레임간의 변화를 측정하여 후보영역을 설정하고 화염의 움직임벡터를 계산하여 화염을 확정한다. 연기에 의하여 영상의 고주파수 성분이 감소하기 때문에 경계값의 변화는 연기의 중요한 특징이다. 연기검출은 색분포, 영상 프레임간의 변화 그리고 경계를 이용하여 후보영역을 설정하고 움직임 벡터를 계산하여 결정한다. 컴퓨터 시뮬레이션을 통하여 제안하는 알고리즘으로 화염과 연기를 검출할 수 있음을 보인다.

모션 벡터를 이용한 화염 검출 알고리즘 (Flame Dection Algorithm with Motion Vector)

  • 박장식;배종갑;최수영
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 춘계학술논문발표회 논문집
    • /
    • pp.135-138
    • /
    • 2008
  • Many Victims and property damage are caused in fires. In this paper, an flame detection algorithm is proposed to early alarm fires. The proposed flame detection algorithm is based on 2-stage decision strategy of video processing. The first decision is to check with color distribution of input vidoe. In the second, the candidated region is settled as fire region with activity. As a result of simulation, it is shown that the proposed algorithm is useful for fire recognition.

  • PDF

Fast Video Fire Detection Using Luminous Smoke and Textured Flame Features

  • Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Salman, Yucel Batu;Ince, Omer Faruk;Lee, Geun-Hoo;Park, Jang-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권12호
    • /
    • pp.5485-5506
    • /
    • 2016
  • In this article, a video based fire detection framework for CCTV surveillancesystems is presented. Two novel features and a novel image type with their corresponding algorithmsareproposed for this purpose. One is for the slow-smoke detection and another one is for fast-smoke/flame detection. The basic idea is slow-smoke has a highly varying chrominance/luminance texture in long periods and fast-smoke/flame has a highly varying texture waiting at the same location for long consecutive periods. Experiments with a large number of smoke/flame and non-smoke/flame video sequences outputs promising results in terms of algorithmic accuracy and speed.

적외선 영상의 화염 검출을 위한 최적 문턱치 분석 (Analysis on Optimal Threshold Value for Infrared Video Flame Detection)

  • 정수영;김원호
    • 한국위성정보통신학회논문지
    • /
    • 제8권4호
    • /
    • pp.100-104
    • /
    • 2013
  • 본 논문은 열영상 기반의 화염 검출을 위한 기존의 문턱치 설정 기법들을 분석하고 최적 문턱치 설정 방안을 제시한다. 기존의 열영상 기반의 화염검출 알고리즘들은 보통 고정 문턱치를 이용하여 화염 후보영역을 추출하고 후처리를 통해 화염 검출을 최종 판정하므로 화염 후보영역의 결정 과정은 최종 화재 검출 결과에 많은 영향을 준다. 따라서 카메라의 종류나 운영 환경에 따라 입력 영상의 대비와 밝기의 변화가 발생하기 때문에 화염 검출 문턱치는 입력영상의 특성에 연동하여 설정되어져야 한다. 따라서 최적 문턱치 설정 방안을 제시하기 위해 고정 명암도, 평균값, 표준편차 및 최대값을 이용한 문턱치 설정 기법들을 비교 분석하였다. 결론적으로 최적 문턱치는 평균과 표준편차의 합보다 크며 최대값 보다는 작은 값으로 설정 한다면 화염 검출 정확도가 기존 고정 문턱치 방식에 비해 크게 개선될 것으로 기대된다.

영상신호와 신경회로망을 이용한 보일러 화염 검출 (Flame Detection of Steam Boilers using Neural Networks and Image Information)

  • 배현;박동재;안항배;김성신
    • 한국지능시스템학회논문지
    • /
    • 제13권2호
    • /
    • pp.163-168
    • /
    • 2003
  • 현재 사용중인 화염 검출기들은 화염 검출에 있어서의 특정 문제점들을 종종 나타내고 있다. 이러한 문제점들을 해결하기 위하여 본 논문에서는 캠코더로 획득한 이미지를 적절하게 전치리한 후 신경망의 입력으로 사용하여 화염을 검출하였다. 이미지를 이용한 화염검출의 경우 보일러 외부에서 데이터를 획득하기 때문에 내부열에 대한 영향들을 줄일 수 있는 방법으로 현재 적용 중인 센서에 기반한 화염검출 방법과는 구별된다. 그리고 패턴 분류를 위하여 사용한 신경망 모델은 다른 버너의 화염에 의한 유사정보틀을 잘 분류하기 때문에 화염검출기의 부정확한 동작을 줄일 수 있다. 신경망은 각 조건에 대한 특징을 학습하고 학습된 정보를 바탕으로 효율적인 화염검출을 수행한다.

Thermal Imaging Fire Detection Algorithm with Minimal False Detection

  • Jeong, Soo-Young;Kim, Won-Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2156-2170
    • /
    • 2020
  • This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.

주기 신호 검출을 통한 거짓 경보 제거 기능을 갖춘 비디오 화염 감지 기법 (Video Flame Detection with Periodicity Analysis Based False Alarm Rejection)

  • 이상학
    • 한국전자통신학회논문지
    • /
    • 제6권4호
    • /
    • pp.479-485
    • /
    • 2011
  • 비디오 기반 화염 감지 기법은 입력 비디오 영상에서 화염과 비슷한 색상을 가지고 움직임이 있는 영역에 대해서 화소 단위로 화염의 특성을 가지고 있는지를 시간적, 공간적 특징 분석을 통하여 확인한다. 비디오 기반 화염 감지 기법 연구의 가장 중요한 부분 중 하나는 화염 감지 성능이 저하되지 않고 어떻게 거짓 경보의 빈도를 줄일 수 있는가 하는 것이다. 기존의 방법들은 전기 장치로 만들어진 불빛들 중에서 자동차 전조등과 같은 일반적인 움직임을 가진 전기 불빛에 의한 거짓 경보는 쉽게 제거하고 있다. 그러나 경광등, 경고등 그리고 네온사인과 같이 깜빡거림이 있는 전기 불빛은 색상과 시간적, 공간적인 특징이 실제 화염과 비슷할 경우 거짓 경보를 발생시키는 요인이 되고 있다. 본 논문에서는 경광등, 경고등 그리고 네온사인과 같이 깜빡거림이 있는 전기 불빛 화소들의 주기 신호 검출을 통하여 진짜 화염이 아님을 확인하는 거짓 경보 제거 기능을 갖춘 비디오 화염 감지 기법을 제안한다. 실험 결과 화재 감지 성능은 기존의 방법과 비슷하였으나 기존의 방법이 거짓 경보를 발생시키는 시험 비디오에서 거짓 경보가 발생되지 않음을 볼 수 있었다.