본 논문은 컬러 영상에서 화염검출 시 주기적으로 점멸하는 비화염 물체 검출을 제거하기 위해 웨이블렛 변환을 이용한 화염 검출 알고리즘을 제안한다. 기존 화염검출 알고리즘에서는 화염의 색상과 시간적인 변화와 공간적인 변화를 분석하고 이들을 조합하여 화염을 판정한다. 하지만 자동차 경광등, 방향지시등과 같이 점멸하면서 화염과 비슷한 특성을 보이는 물체를 화염으로 검출하는 문제점이 있다. 본 논문은 주기적으로 점멸하면서 화염과 비슷한 특성을 보이는 비화염 요소의 주기성을 판별하여 오검출을 감소시킨다. 제안하는 알고리즘은 화염의 색상과 영상 차분 기법으로 화염 후보영역을 선정하고 선정된 후보영역에 대하여 웨이블렛 변환 계수를 분석하여 주기성을 갖는 오검출 요소를 포함한 비화염 영역을 제거하는 알고리즘을 제안한다. 제안된 알고리즘의 모의실험 결과, 주기성을 갖는 비화염 영역을 제거하였고 97.9%의 검출율과 7.3%의 낮은 오검출율 성능을 확인하였다.
본 논문에서는 불꽃 감지를 위한 임베디드 시스템에 적합한 딥러닝 구조를 제안한다. 제안하는 딥러닝 구조의 불꽃 감지 과정은 불꽃 색깔 모델을 사용한 불꽃 영역 검출, 불꽃 색깔 특화 딥러닝 구조를 사용한 불꽃 영상 분류, 검출된 불꽃 영역의 $N{\times}N$ 셀 분리, 불꽃 모양 특화 딥러닝 구조를 사용한 불꽃 영상 분류 등의 4가지 과정으로 구성된다. 첫 번째로 입력 영상에서 불꽃의 색만을 추출한 다음 레이블링하여 불꽃 영역을 검출한다. 두 번째로 검출된 불꽃 영역을 불꽃 색깔에 특화 학습된 딥러닝 구조의 입력으로 넣고, 출력단의 불꽃 클래스 확률이 75% 이상에서만 불꽃 영상으로 분류한다. 세 번째로 앞 단에서 75% 미만 불꽃 영상으로 분류된 영상들의 검출된 불꽃 영역을 $N{\times}N$ 단위로 분할한다. 네 번째로 $N{\times}N$ 단위로 분할된 작은 셀들을 불꽃의 모양에 특화 학습된 딥러닝 구조의 입력으로 넣고, 각 셀의 불꽃 여부를 판단하여 50% 이상의 셀들이 불꽃 영상으로 분류될 경우에 불꽃 영상으로 분류한다. 제안된 딥러닝 구조의 성능을 평가하기 위하여 ImageNet의 불꽃 데이터베이스를 사용하여 실험하였다. 실험 결과, 제안하는 딥러닝 구조는 기존의 딥러닝 구조보다 평균 29.86% 낮은 리소스 점유율과 8초 빠른 불꽃 감지 시간을 나타내었다. 불꽃 검출률은 기존의 딥러닝 구조와 비교하여 평균 0.95% 낮은 결과를 나타내었으나, 이는 임베디드 시스템에 적용하기 위해 딥러닝 구조를 가볍게 구성한데서 나온 결과이다. 따라서 본 논문에서 제안하는 불꽃 감지를 위한 딥러닝 구조는 임베디드 시스템 적용에 적합함이 입증되었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권10호
/
pp.3475-3489
/
2014
Here we present a simple flame detection method for an infrared (IR) thermal camera based real-time fire surveillance digital signal processor (DSP) system. Infrared thermal cameras are especially advantageous for unattended fire surveillance. All-weather monitoring is possible, regardless of illumination and climate conditions, and the data quantity to be processed is one-third that of color videos. Conventional IR camera-based fire detection methods used mainly pixel-based temporal correlation functions. In the temporal correlation function-based methods, temporal changes in pixel intensity generated by the irregular motion and spreading of the flame pixels are measured using correlation functions. The correlation values of non-flame regions are uniform, but the flame regions have irregular temporal correlation values. To satisfy the requirement of early detection, all fire detection techniques should be practically applied within a very short period of time. The conventional pixel-based correlation function is computationally intensive. In this paper, we propose an IR camera-based simple flame detection algorithm optimized with a compact embedded DSP system to achieve early detection. To reduce the computational load, block-based calculations are used to select the candidate flame region and measure the temporal motion of flames. These functions are used together to obtain the early flame detection algorithm. The proposed simple algorithm was tested to verify the required function and performance in real-time using IR test videos and a real-time DSP system. The findings indicated that the system detected the flames within 5 to 20 seconds, and had a correct flame detection ratio of 100% with an acceptable false detection ratio in video sequence level.
본 논문에서는 화재의 조기 감지를 위하여 카메라 입력영상으로부터 화염과 연기를 검출하는 알고리즘을 제안한다. 화염과 연기는 특정 색분포를 가지며 지속적으로 형태가 변화하며 움직인다. 제안하는 화염검출 알고리즘은 화염의 색분포와 영상 프레임간의 변화를 측정하여 후보영역을 설정하고 화염의 움직임벡터를 계산하여 화염을 확정한다. 연기에 의하여 영상의 고주파수 성분이 감소하기 때문에 경계값의 변화는 연기의 중요한 특징이다. 연기검출은 색분포, 영상 프레임간의 변화 그리고 경계를 이용하여 후보영역을 설정하고 움직임 벡터를 계산하여 결정한다. 컴퓨터 시뮬레이션을 통하여 제안하는 알고리즘으로 화염과 연기를 검출할 수 있음을 보인다.
Many Victims and property damage are caused in fires. In this paper, an flame detection algorithm is proposed to early alarm fires. The proposed flame detection algorithm is based on 2-stage decision strategy of video processing. The first decision is to check with color distribution of input vidoe. In the second, the candidated region is settled as fire region with activity. As a result of simulation, it is shown that the proposed algorithm is useful for fire recognition.
Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Salman, Yucel Batu;Ince, Omer Faruk;Lee, Geun-Hoo;Park, Jang-Sik
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권12호
/
pp.5485-5506
/
2016
In this article, a video based fire detection framework for CCTV surveillancesystems is presented. Two novel features and a novel image type with their corresponding algorithmsareproposed for this purpose. One is for the slow-smoke detection and another one is for fast-smoke/flame detection. The basic idea is slow-smoke has a highly varying chrominance/luminance texture in long periods and fast-smoke/flame has a highly varying texture waiting at the same location for long consecutive periods. Experiments with a large number of smoke/flame and non-smoke/flame video sequences outputs promising results in terms of algorithmic accuracy and speed.
본 논문은 열영상 기반의 화염 검출을 위한 기존의 문턱치 설정 기법들을 분석하고 최적 문턱치 설정 방안을 제시한다. 기존의 열영상 기반의 화염검출 알고리즘들은 보통 고정 문턱치를 이용하여 화염 후보영역을 추출하고 후처리를 통해 화염 검출을 최종 판정하므로 화염 후보영역의 결정 과정은 최종 화재 검출 결과에 많은 영향을 준다. 따라서 카메라의 종류나 운영 환경에 따라 입력 영상의 대비와 밝기의 변화가 발생하기 때문에 화염 검출 문턱치는 입력영상의 특성에 연동하여 설정되어져야 한다. 따라서 최적 문턱치 설정 방안을 제시하기 위해 고정 명암도, 평균값, 표준편차 및 최대값을 이용한 문턱치 설정 기법들을 비교 분석하였다. 결론적으로 최적 문턱치는 평균과 표준편차의 합보다 크며 최대값 보다는 작은 값으로 설정 한다면 화염 검출 정확도가 기존 고정 문턱치 방식에 비해 크게 개선될 것으로 기대된다.
현재 사용중인 화염 검출기들은 화염 검출에 있어서의 특정 문제점들을 종종 나타내고 있다. 이러한 문제점들을 해결하기 위하여 본 논문에서는 캠코더로 획득한 이미지를 적절하게 전치리한 후 신경망의 입력으로 사용하여 화염을 검출하였다. 이미지를 이용한 화염검출의 경우 보일러 외부에서 데이터를 획득하기 때문에 내부열에 대한 영향들을 줄일 수 있는 방법으로 현재 적용 중인 센서에 기반한 화염검출 방법과는 구별된다. 그리고 패턴 분류를 위하여 사용한 신경망 모델은 다른 버너의 화염에 의한 유사정보틀을 잘 분류하기 때문에 화염검출기의 부정확한 동작을 줄일 수 있다. 신경망은 각 조건에 대한 특징을 학습하고 학습된 정보를 바탕으로 효율적인 화염검출을 수행한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권5호
/
pp.2156-2170
/
2020
This paper presents a fire detection algorithm with a minimal false detection rate, intended for a thermal imaging surveillance environment, whose properties vary depending on temporal conditions of day or night and environmental changes. This algorithm was designed to minimize the false detection alarm rate while ensuring a high detection rate, as required in fire detection applications. It was necessary to reduce false fire detections due to non-flame elements occurring when existing fixed threshold-based fire detection methods were applied. To this end, adaptive flame thresholds that varied depending on the characteristics of input images, as well as the center of gravity of the heat-source and hot-source regions, were analyzed in an attempt to minimize such non-flame elements in the phase of selecting flame candidate blocks. Also, to remove any false detection elements caused by camera shaking, one of the most frequently raised issues at outdoor sites, preliminary decision thresholds were adaptively set to the motion pixel ratio of input images to maximize the accuracy of the preliminary decision. Finally, in addition to the preliminary decision results, the texture correlation and intensity of the flame candidate blocks were averaged for a specific period of time and tested for their conformity with the fire decision conditions before making the final decision. To verify the fire detection performance of the proposed algorithm, a total of ten test videos were subjected to computer simulation. As a result, the fire detection accuracy of the proposed algorithm was determined to be 94.24%, with minimum false detection, demonstrating its improved performance and practicality compared to previous fixed threshold-based algorithms.
비디오 기반 화염 감지 기법은 입력 비디오 영상에서 화염과 비슷한 색상을 가지고 움직임이 있는 영역에 대해서 화소 단위로 화염의 특성을 가지고 있는지를 시간적, 공간적 특징 분석을 통하여 확인한다. 비디오 기반 화염 감지 기법 연구의 가장 중요한 부분 중 하나는 화염 감지 성능이 저하되지 않고 어떻게 거짓 경보의 빈도를 줄일 수 있는가 하는 것이다. 기존의 방법들은 전기 장치로 만들어진 불빛들 중에서 자동차 전조등과 같은 일반적인 움직임을 가진 전기 불빛에 의한 거짓 경보는 쉽게 제거하고 있다. 그러나 경광등, 경고등 그리고 네온사인과 같이 깜빡거림이 있는 전기 불빛은 색상과 시간적, 공간적인 특징이 실제 화염과 비슷할 경우 거짓 경보를 발생시키는 요인이 되고 있다. 본 논문에서는 경광등, 경고등 그리고 네온사인과 같이 깜빡거림이 있는 전기 불빛 화소들의 주기 신호 검출을 통하여 진짜 화염이 아님을 확인하는 거짓 경보 제거 기능을 갖춘 비디오 화염 감지 기법을 제안한다. 실험 결과 화재 감지 성능은 기존의 방법과 비슷하였으나 기존의 방법이 거짓 경보를 발생시키는 시험 비디오에서 거짓 경보가 발생되지 않음을 볼 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.