• Title/Summary/Keyword: Flame chemiluminescence

Search Result 98, Processing Time 0.023 seconds

Flame Dynamic Response to Inlet Flow Perturbation in a Turbulent Premixed Combustor (난류 예혼합 연소기에서의 흡입 유동 섭동에 대한 화염의 동적 거동)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.4
    • /
    • pp.48-53
    • /
    • 2009
  • This paper describes the forced flame response in a turbulent premixed gas turbine combustor. The fuel was premixed with the air upstream of a choked inlet to avoid equivalence ratio fluctuations. To impose the inlet flow velocity, a siren type modulation device was developed using an AC motor, rotating and static plates. Measurements were made of the velocity fluctuation in the nozzle using hot wire anemometry and of the heat release fluctuation in the combustor using chemiluminescence emission. The test results showed that flame length as well as geometry was strongly dependent upon modulation frequency in addition to operating conditions such as inlet velocity. Convection delay time between the velocity perturbation and heat release fluctuations was calculated using phase information of the transfer function, which agreed well with the results of flame length measurements. Also, basic characteristics of the flame nonlinear response shown in the current test conditions were introduced.

  • PDF

Self-Excited Noise Generation from Laminar Methane/Air Premixed Flames in Thin Annular JetsPut (환형제트에서의 메탄과 공기의 층류 예혼합 화염에서 발생되는 자발적인 소음에 대한 실험적 연구)

  • Jin, S.H.;Joung, J.H.;Kwon, S.J.;Chung, S.H.
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.159-165
    • /
    • 2003
  • Self-excited noise generation from laminar flames in thin annular jets of methane/air premixture has been investigated experimentally. Various flames were observed in this flow configuration, including conical shape flames, ring shape flames, steady crown shape flames, and oscillating crown shape flames. Self-excited noise with the total sound pressure level of about 70dB was generated from the oscillating crown shape flames for the equivalence ratio larger than 0.95. Sound pressure and $CH^{\ast}$ chemiluminescence were measured by using a microphone and a photomultiplier tube. The frequency of generated noise was measured as functions of equivalence ratio and premixture velocity. A frequency doubling phenomena have also been observed. The measured $CH^{\ast}$ chemiluminescence data were analyzed from which the corresponding sound pressure has been calculated. By comparing the data with those of measured ones, the noise source can be attributed to the flame front fluctuation near the edge of the oscillating crown-shape flames. The flame stability regime was influenced sensitively to the supplying air through the inner tube.

  • PDF

Characteristics of Flame Structure and $NO_X$ Emission in a Dump Gas Turbine as Fuel-Air Mixing Degrees (희박 예혼합 정도에 따른 모형 덤프 가스터빈 연소기의 화염 구조와 $NO_X$배출 특성)

  • Ryu, Hye-Yeon;Jeon, Chung-Hwan;Chang, Young-June
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3452-3457
    • /
    • 2007
  • Experiments were carried out in an atmopheric pressure, lab-scale gas turbine combustor to see the effect of partial premixing on unstable flame structure and $NO_X$ emission characteristics. The swirl angle is 45 deg., fuel-air mixing degrees were varied 0, 50, and 100% respectively at equivalence ration ranging from 0.53 to 0.79. The evaluation of phased-locked OH chemiluminescence images were acquired with an ICCD. $NO_X$ emission characteristics were also investigated at each experimental condition. The effect of the fuel-air mixing degree on the flame structure was obtained from phase-locked $OH^*$ images. And it was obtained from local heat release characteristics that the information about the region which the combustion instability was amplified or damped. It also could be confirmed that ${\sigma}$ has greatly influence on $NO_X $emission characteristics at lean regimes. It would be expected that it could provide invaluable data for understanding the mechanism of combustion instability

  • PDF

A Study on Laminar Lifted Jet Flames for Diluted Methane in Co-flow Air

  • Sapkal, Narayan P.;Lee, Won June;Park, Jeong;Kwon, Oh Boong
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • The laminar lifted jet flames for methane diluted with helium and nitrogen in co-flow air have been investigated experimentally. Such jet flames could be lifted in both buoyancy-dominated and jet momentum dominated regimes (even at nozzle exit velocities much higher than stoichiometric laminar flame speed) despite the Schmidt number less than unity. Chemiluminescence intensities of $OH^*$ radical (good indicators of heat release rate) and the radius of curvature for tri-brachial flame were measured using an intensified charge coupled device (ICCD) camera and digital video camera at various conditions. It was shown that, an increase in $OH^*$ concentration causes increase of edge flame speed via enhanced chemical reaction in buoyancy dominated regime. In jet momentum dominated regime, an increase in radius of curvature in addition to the increased $OH^*$ concentration stabilizes such lifted flames. Stabilization of such lifted flames is discussed based on the stabilization mechanism.

Combustion Characteristics of Methane/Oxygen in Pre-Mixed Swirl Flame (메탄/순산소 예혼합 화염의 선회특성)

  • Kim, Han-Seok;Choi, Won-Seok;Cho, Ju-Hyeong;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • The present study has experimentally investigated the effects of $CO_2$ diluted oxygen on the structure of swirl-stabilized flame in a lab-scale combustor. The methane fuel and oxidant mixture gas ($CO_2$ and $O_2$) were mixed in a pre-mixer and introduced to the combustor through different degrees of swirl vanes. The flame characteristics were examined for various amount of carbon dioxide addition to the methane fuel and various swirl strengths. The effects of carbon dioxide addition and swirl intensity on the combustion characteristics of pre-mixed methane flames were examined using chemiluminescence techniques to provide information about flow field. The results show that the hot combustion zone increases at the upstream reaction zone because of an increase in the recirculation flow for an increase in swirl intensity. The hot combustion zone is also increased at the downstream zone by recirculation flow because of an increase in swirl intensity which results in higher centrifugal force. The OH and CH radical intensities of reaction zone decrease with carbon dioxide addition because the carbon dioxide plays a role of diluted gas in the reaction zone.

A Study on Combustion Characteristics and Flow Analysis of a Lean Premixed Flame in Lab-Scale Gas Turbine Combustor (모형 가스터빈 연소기에서 희박 예혼합 화염의 연소 특성 및 유동 해석에 관한 연구)

  • Ryu, Hye-Yeon;Kim, Gyu-Bo;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.8
    • /
    • pp.574-581
    • /
    • 2008
  • The characteristics of combustion and flow for a lean premixed flame in lab-scale gas turbine combustor was studied through experiment and numerical analysis. From the experiment, flame structure and heat release rate were obtained from OH emission spectroscopy. Qualitative comparisons were made line-integrated OH chemiluminescence image and abel-transformed one. NOx analyzer was implemented to get the characteristic of NOx exhaust from the combustor. From the numerical analysis, the thermal distribution and characteristic of recirculation zone with the change of fuel-air mixing degree, the characteristic of methane distribution with equivalence ratio in the combustor respectively. Total heat release rate is increased with increasing equivalence ratio. Thermal Nox is reduced with increasing fuel-air mixing degree. Increasing equivalence ratio results in the decrease of the size of reaction zone and alteration of the position of the reaction zone into the entrance of the combustor.

Experimental Study on Laminar Lifted Methane Jet Flame Diluted with Nitrogen and Helium

  • Sapkal, Narayan;Lee, Won June;Park, Jeong;Kwon, Oh Boomg
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.387-389
    • /
    • 2014
  • Laminar lifted methane jet flame diluted with nitrogen and helium in co-flow air has been investigated experimentally. This paper examines the role of chemistry, intermediate species responsible for stabilization of lifted flame. To elucidate the stabilization mechanism in lifted methane jet flames with Sc<1, the chemiluminescence intensities of $CH^*$ and $OH^*$ were measured using ICCD camera at various nozzle exit velocities and fuel mole fractions. It has been observed that the $OH^*$ species can play an important role in stabilization of lifted methane jet flame as they are good indicators of heat release rate which can affect on flame speed and increase stability through reduction in ignition delay time.

  • PDF

Experimental Study on Laminar Lifted Methane Jet Flame Diluted with Nitrogen and Helium

  • Sapkal, Narayan;Lee, Won June;Park, Jeong;Kwon, Oh Boomg
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.125-128
    • /
    • 2014
  • Laminar lifted methane jet flame diluted with nitrogen and helium in co-flow air has been investigated experimentally. This paper examines the role of chemistry, intermediate species responsible for stabilization of lifted flame. To elucidate the stabilization mechanism in lifted methane jet flames with Sc<1, the chemiluminescence intensities of $CH^*$ and $OH^*$ were measured using ICCD camera at various nozzle exit velocities and fuel mole fractions. It has been observed that the $OH^*$ species can play an important role in stabilization of lifted methane jet flame as they are good indicators of heat release rate which can affect on flame speed and increase stability through reduction in ignition delay time.

  • PDF

An Experimental Study on Flame Spread in One-Dimensional Droplet Array with Forced Convection (강제 대류하에서 일차원 액적 배열내의 화염 퍼짐에 관한 실험적 연구)

  • Park, Jeong;Lee, Kiman;Niioka, Takashi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.1
    • /
    • pp.68-74
    • /
    • 2000
  • Experimental investigation on flame spread along suspended droplet arrays have been conducted with various droplet spacings and ambient air velocities. Especially, an opposed air stream is introduced to simulate fundamental flame spread behaviors in spray combustion. High-speed chemiluminescence imaging technique of OH radicals has been adopted to measure flame spread rates and to observe various flame spread behaviors. The fuel used is n-Decane and the air velocity varies from 0 to 17cm/s. The pattern of flame spread is grouped into two: a continuous mode and an intermittent one. It is found that there exists droplet spcings, above which flame spread does not occur. The increase of ambient air velocity causes the limit droplet spacing of flame spread to become small due to the increase of apparent flame stretch. As the ambient air velocity decreases, flame spread rate increases and then decreases after taking a maximum flame spread rate. This suggests that there exists a moderate air flowing to give a maximum flame spread rate due to enhanced chemical reaction by the increase of oxidizer concentration.

A Study on Blend Effect of Fuel in Flame Spread Along An One-Dimensional Droplet Array (일차원 액적 배열의 화염 퍼짐에 있어서 연료의 혼합 효과에 관한 연구)

  • Park, Jeong;Kobayashi, Hideaki;Niioka, Takashi
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.1-11
    • /
    • 1998
  • Experimental investigation on flame spread of blended fuel droplet arrays has been conducted for droplet diameters of 1.0mm and 0.75mm using high-speed chemiluminescence images of OH radical. The flame spread rate is measured with blended fuel composition, droplet diameter, and droplet spacing. Flame spread is categorized into two: a continuous mode and an intermittent one. There exist a limit droplet spacing, above which flame does not spread, and a droplet spacing of maximum flame spread, which is closely related to flame diameter. It is seen that flame spread rate is mainly dependent upon the relative position of flame zone within a droplet spacing. In case of large droplet, the increase of % volume of Heptane induces the shift of limit droplet spacing to a larger spacing since volatile Heptane plays a role of an enhancer of flame spread rate. In case of small droplet, the increase of % volume of Heptane leads to the shift of limit droplet spacing to a smaller droplet spacing. This is so because of the delayed chemical reaction time by the rapid increase of mass flux of fuel vapor for small droplet.

  • PDF