• Title/Summary/Keyword: Flame characteristics

Search Result 1,523, Processing Time 0.032 seconds

Fundamental Studies on NOx Emission Characteristics in a Dimethyl Ether/Air Nonpremixed Flame (DME/Air 비예혼합화염의 NOx 생성 특성에 관한 기초 연구)

  • Kim, Tae-Hyun;Kim, Jong-Hyun;Lee, Chang-Eon
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.1973-1978
    • /
    • 2008
  • The NOx emission characteristics of DME in counterflow nonpremixed flames were investigated numerically, and brief experiments were carried out to compare the flame shapes and NOx emissions with those of $C_3H_8$ and $C_2H_6$. The DME flames were calculated using Kaiser's mechanism, while the $C_2H_6$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show that DME flame has the characteristics of partial premixed flame and the flame length becomes very shorter compared with general hydrocarbon fuels and then, the NOx emission of DME is low as much as 60% of $C_3H_8$. In the calculated results of counterflow nonpremixed flames, the EINO of DME nonpremixed flame is low as much as 50% of the $C_2H_6$ nonpremixed flame. The cause of $EI_{NO}$ reduction is attributed mainly to the characteristics of partial premixed flame due to the existence of O atom in DME and partly to the O-C bond in DME, instead of C-C bond in hydrocarbon fuels.

  • PDF

Numerical Simulation on Characteristics of Laminar Diffusion Flame Placed Near Wall in Microgravity Environment (미소중력 환경내의 벽면 근방 확산 화염 특성에 관한 수치 해석)

  • Choi Jae-Hyuk;Fujita Osamu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.140-149
    • /
    • 2006
  • Characteristics of a laminar diffusion flame placed near wall in microgravity have been numerically analyzed in a two-dimension. The fuel for the flame is $C_2H_4$. The flame is initiated by imposing a high temperature ignition source. The flow field, temperature field, and flame shape in microgravity diffusion flame are detailed. Especially, effects of surrounding air velocity and fuel injection velocity on the microgravity diffusion flame have been discussed accounting for standoff distance. And, the effect of curvature rate has been also studied. The results showed that velocities in a diffusion flame were overshoot because of volumetric expansion and distribution of temperature showed regularity by free-buoyancy This means that the diffusion flame in microgravity is very stable, while the flame in normal gravity is not regular and unstable due to buoyancy. Standoff distance decreases with increase in surrounding air velocity and with decrease in fuel injection velocity. With increasing curvature rate, the position of reaction rate moves away the wall.

The Characteristics of the Flame Propagation Velocity and Volume Integral of Reaction Rate with the Variation of Fuel Injection Velocity for a Liftoff Flame (부상화염에서 연료유량에 따른 화염전파속도와 체적연소반응속도의 변화 특성에 관한 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Park, Jeung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.466-475
    • /
    • 2009
  • A numerical analysis of reactive flow in a liftoff flame is accomplished to elucidate the characteristics of flame propagation velocity and volume integral of reaction rate with the variation of fuel injection velocity at the fuel rich region, fuel lean region and diffusion flame region. The increase of fuel injection velocity enhances flame propagation velocity, but its effect on the flame propagation velocity is not much greater under 4%. The increase of fuel injection velocity affects directly and linearly on the flame surface area in the fuel rich region and so enhances volume integral of reaction rate to accommodate the increment of fuel.

Investigation on Flame Characteristics′ Variation by Flue Gas Recirculation and Fuel Injection Recirculation (산화제류 및 연료류 희석에 의한 화염특성변화에 대한 연구)

  • Han, Ji-Woong;Kum, Sung-Min;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1625-1631
    • /
    • 2004
  • Investigation on Flue Gas Recirculation(FGR) flame and Fuel Injection Recirculation(FIR) flame was performed with numerical method. Quantitative Reaction Path Diagram(QRPD) is utilized to compare the different chemistry effects between FGR flame and FIR flame. In order to compare flamelets in various oxygen-enrichment conditions reasonably, the adiabatic flame temperature and Damkohler number were held fixed by modulating the amount of diluents to fuel and oxidizer stream and by varying global strain rate of flame respectively. Basic flame structures were compared and characteristics of CH$_4$ decomposition and NO formation were analyzed based on QRPD analysis between FGR flame and FIR flame.

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(I) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구)

  • Choe, Byeong-Ryun;Jang, In-Gap;Choe, Gyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1028-1039
    • /
    • 1996
  • This study was focused on the examination of the flame structure and the combustion characteristics of diffusion flame which was formed the turbulent shear flow of a double coaxial air jet system. The shear flow was formed by the difference velocity of surrounding air jet(U$\_$s/) and center air jet (U$\_$c/). So experimental condition was divided S-type flame (.lambda. > 1) and C-type flame (.lambda. < 1) by velocity ratio .lambda. (=U$\_$s//U$\_$c/). For examination of the flame structure and the combustion characteristics in diffusion flame, coherent structure was observed in flame by schlieren photograph method. We measured fluctuating temperature and ion current simultaneously and accomplished the statistical analysis of its. According to schlieren photograph, the flame was stabilized in the rim of the direction of lower velocity air jet, coherent eddy was produced and developed by higher velocity air jet. The statistical data of fluctuating temperature and ion current was indicated that reaction was dominated by higher velocity air jet. The mixing state of burnt gas and non-burnt gas was distributed the wide area at Z = 100 mm of C-type flame.

A Study on chemiluminescence characteristics of a turbulent flame for different measurement location (난류 확산화염의 계측 위치에 따른 화염자발광 특성에 대한 연구)

  • Kwon, Minjun;Lee, Changyeop;Kim, Sewon
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.219-222
    • /
    • 2014
  • The flame chemiluminescence is a good tracer of flame statement. In this study, the characteristics of flame chemiluminescence($OH^*$, $CH^*$, ${C_2}^*$) according different measuring locations using photomultiplier(PMT), spectrometer and CCD camera. Measurements are made for $OH^*$, $CH^*$, ${C_2}^*$ radicals in gas & light oil diffusion flames. At turbulent nonpremixed combustion mode, the equivalence ratio is varied. The experimental results showed that measuring location affects the result of flame chemiluminescence.

  • PDF

An Experimental Study on the Ignition Probability and Combustion Flame Characteristics of Spark-Ignited Direct-Injection CNG (스파크점화직분식 CNG의 점화성 및 연소화염 특성에 대한 연구)

  • Hwang, Seongill;Chung, Sungsik;Yeom, Jeongkuk;Jeon, Byongyeul;Lee, Jinhyun
    • Journal of ILASS-Korea
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2016
  • For the SI engines, at only full load, the pumping loss has a negligible effect, while at part load conditions, the pumping loss increases. To avoid the pumping loss, the spark-ignited engines are designed to inject gasoline directly into the combustion chamber. In the spark-ignited direct-injection engines, ignition probability is important for successful combustion and the flame propagation characteristics are also different from that of pre-mixed combustion. In this paper, a visualization experiment system is designed to study the ignition probability and combustion flame characteristics of spark-ignited direct-injection CNG fuel. The visualization system is composed of a combustion chamber, fuel supply system, air supply system, electronic control system and data acquisition system. It is found that ambient pressure, ambient temperature and ambient air flow velocity are important parameters which affect the ignition probability of CNG-air mixture and flame propagation characteristics and the injected CNG fuel can be ignited directly by a spark-plug under proper ambient conditions. For all cases of successful ignition, the flame propagation images were digitally recorded with an intensified CCD camera and the flame propagation characteristics were analyzed.

NOx Emission Characteristics of Dimethyl Ether/Air Nonpremixed Flames (DME/Air 비예혼합화염의 NOx 생성특성)

  • Hwang, Cheol-Hong;Kum, Sung-Min;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.926-935
    • /
    • 2007
  • The NOx emission characteristics of DME in laminar coaxial jet and counterflow nonpremixed flames were investigated using experimental and numerical approaches, respectively. The flame structure and NOx emission of DME were compared with those of $C_2H_6$ and $C_3H_8$. The DME flame was calculated using the Kaiser's mechanism, while the $C_2H_6$ and $C_3H_8$ flames were calculated using the $C_3$ mechanism. These mechanisms were combined with the modified Miller-Bowman mechanism for the analysis of NOx. Experimental results show in coaxial jet flame that DME flame has the characteristics of partial premixed flame and the flame length decreases up to 1/3 than that of $C_3H_8$ in the same condition of fuel mass flowrate. Then, the NOx emission of DME decreases to 40% approximately, comparing with that of $C_3H_8$. In the calculated results of counterflow nonpremixed flame, DME flame shows the $EI_{NO}$ decreases up to 50% approximately than those of$ C_2H_6$ and $C_3H_8$ flames when the equivalent fuels are consumed per unit mass and time. Although the overall NOx reaction path of DME is similar with other hydrocarbon fuels, it can be identified that DME flame has a distinct NO reduction mechanism due to the reburning NO chemistry in fuel rich region. From these results, we can conclude that the different NOx emission characteristics of DME flame with other hydrocarbon fuels are attributed to not the temperature increase and the activation of NO reactions due to O atom in DME fuel but the rapid processes of pyrolysis/oxidation.

A Study on Combustion Characteristics of Fire Retardant Treated Wood (난연처리된 목재의 연소특성에 관한 연구)

  • Park, Hyung-Ju;Kang, Young-Goo;Kim, Hong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.4 s.132
    • /
    • pp.38-44
    • /
    • 2005
  • This study was carried out to investigate the combustion characteristics of flame retardant treated wood by water-soluble flame retardants which are made from mixture of aqueous solution of monoammonium phosphate, sodium borate and zinc borate. The combustion characteristics for flame retardant treated wood were carried out using thermal analysis (TGA, combustion heat) and flame retardant test (LOI, flame propagation). The results of thermal analysis and flame retardant test are as follows; 1) The sample treated by F4 showed excellent flame retardant effects in almost all of combustion characteristics. 2) From TGA curves, all the samples undergo pyrolysis and oxidation in two main discrete steps. 3) The effect of flame retardant for softwood is higher than those for hardwood, and the combustion heat has decreased with increase of the content of flame retardant. 4) LOI values are almost similar in flame retardant treated wood samples. The range of LOI is from 24 to 30. However, these values are much higher than LOI value of non-treated wood sample. 5) The blended aqueous solution had a final in the range of about pH 8.4, and a slight odor of ammonia.

Combustion Characteristics Using a S.I. Optically Acessible Engine with SCV (SCV를 장착학 가솔린 가시화엔진에서의 연소특성)

  • 정구섭;김형준;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve gasoline optically accessible engine with swirl control valve(SCV). It adapted three different types of SCA(open ration 72.5%, 78%, 89%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt)were calculated to explain burn rate and flame speed. From acquired flame images, inspected the flame propagation direction, flame area, and flame centroid, Flame propagation direction was shown different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame image at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

  • PDF