• Title/Summary/Keyword: Fixed precision sampling plan

Search Result 10, Processing Time 0.027 seconds

Development of Sequential Sampling Plans for Tetranychus urticae in Strawberry Greenhouses (딸기 온실에서 점박이응애의 축차표본조사법 개발)

  • Choe, Hojeong;Kang, Juwan;Jung, Hyojin;Choi, Sira;Park, Jung-Joon
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.427-436
    • /
    • 2017
  • A fixed-precision-level sampling plan was developed to establish control of the two-spotted spider mite, Tetranychus urticae, in two strawberry greenhouses (conventional plot, natural enemy plot). T. urticae was sampled by taking a three-leaflet leaf (1 stalk) from each plant (3 three-leaflet leaves) from each sampling position. Each leaflet was divided into three different units (1-leaflet, 2-leaflet, and 3-leaflet units) to compare relative net precision (RNP) values for selection of the appropriate sampling unit. The relative net precision values indicated that a 1-leaflet unit was more precise and cost-efficient than other units. The spatial distribution analysis was performed using Taylor's power law (TPL). Homogeneity of the TPL parameters in each greenhouse was evaluated by using the analysis of covariance (ANCOVA). A fixed-precision-level sequential sampling plan was developed using the parameters of TPL generated from the combined data of the conventional plot and natural enemy plot in a 1-leaflet sampling unit. Sequential classification sampling plans were also developed using the action threshold of 3 and 10 mites for pooled data. Using the results obtained in the independent data, simulated validation of the developed sampling plan by Resampling validation for sampling plan (RVSP) indicated a reasonable level of precision.

Development of Sequential Sampling Plan of Bemisia tabaci in Greenhouse Tomatoes (토마토 온실내 담배가루이의 축차표본조사법 개발)

  • SoEun Eom;Taechul Park;Kimoon Son;Jiwon Jeong;Jung-Joon Park
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.299-305
    • /
    • 2023
  • Bemisia tabaci is one of polyphagous insect pests that transmits Tomato Yellow Leaf Curl Virus (TYLCV) and Cassava Brown Streak Disease (CBSD). Insecticides are primarily applied to control B. tabaci, but it has limits due to the development of resistance. As a result, a fixed precision sampling plan was developed for its integrated pest management (IPM). The tomato plants were divided into top (more than 130cm from the ground), middle (70 cm to 100 cm above the ground), and bottom (50 cm or less above the ground) strata, before visual sampling of the larvae of B. tabaci. The spatial distribution analysis was conducted using Taylor's power law coefficients with pooled data of top, middle, bottom strata. Fixed precision sampling plan and control decision-making were developed with precision levels and action threshold recommended from published scientific papers. To assess the validation of the developed sampling plans, independent data not used in the analysis were evaluated using the Resampling Validation for Sampling Plan (RVSP) program.

Development of Sequential Sampling Plan for Bemisia tabaci in Paprika Greenhouses (파프리카 온실에서 담배가루이의 축차표본조사법 개발)

  • Choi, Wonseok;Park, Jung-Joon
    • Korean journal of applied entomology
    • /
    • v.54 no.3
    • /
    • pp.159-167
    • /
    • 2015
  • In order to establish B. tabaci control in paprika greenhouses a fixed-precision-level sampling plan was developed. The sampling plan consisted of spatial distribution analysis, a sampling stop line, and decision making. Sampling was conducted simultaneously in two independent greenhouses (GH 1, GH 2). GH 1 and 2 were surveyed every week for 22 consecutive weeks, using 19 sampling locations in GH 1 and 9 sampling locations in GH 2. The plant in both greenhouses were divided into top (180-220 cm from the ground), middle (80-120 cm from the ground) and bottom (30-70 cm from the ground) sections and B. tabaci adults and pupae were observed on three paprika leaves at each position and recorded separately. GH 2 data were used to validate the fixed-precision sampling plan, which was developed using GH 1 data. In this study, spatial distribution analysis was performed using Taylor's power law with the pooled data of the top and bottom position (B. tabaci adults), and the middle and bottom positions (B. tabaci pupae), based on a 1-leaf sampling unit. Decision making was undertaken using the maximum of action threshold in accordance with previously published method, and the value was decided by the price of the plants. Using the results obtained in the greenhouse, simulated validation of the developed sampling plan by RVSP (Resampling Validation for Sampling Plan) indicated a reasonable level of precision.

Dispersion Indices and Sequential Sampling Plan for the Citrus Red Mite, Panonychus citri (McGregor) (Acari: Tetranychidae) on Satsuma Mandarin on Jeju Island (온주밀감에서 률응애의 공간분포분석 및 표본추출법)

  • 송정흡;이창훈;강상훈;김동환;강시용;류기중
    • Korean journal of applied entomology
    • /
    • v.40 no.2
    • /
    • pp.105-109
    • /
    • 2001
  • Dispersion pattern of the citrus red mite (CRM), Panonychus citri (McGregor) was determined to develop a monitoring method in the satsuma mandarin fields, Citrus unshiu L., in Jeju-do, during 1999 and 2000. CRM population was sampled by collecting leaves. Taylor's power law provided better description of mean-variance relationship for the dispersion indices compared to Iwao's patchiness regression. Slopes and intercepts of Taylor's power law from leaf samples did not differ among surveyed groves. Fixed-precision levels (D) of a sequential sampling plan were developed using Taylor's power law parameters generated from all motile stages of CRM in leaf sample. This sampling plan for leaf sample estimate was tested with resampling validation for sampling plan using 4 independent data sets. Resampling simulation analysis demonstrated that actual fixed-precision level values were better than desired D values of 0.20, 0.25 and 0.30. Required numbers for tree sampling at the density of more than 7 mites per tree were fewer than 18.

  • PDF

Development of sequential sampling plan for Frankliniella occidentalis in greenhouse pepper (고추 온실에서 꽃노랑총채벌레의 축차표본조사법 개발)

  • SoEun Eom;Taechul Park;Kimoon Son;Jung-Joon Park
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.164-171
    • /
    • 2022
  • Frankliniella occidentalis is an invasive pest insect, which affects over 500 different species of host plants and transmits viruses (tomato spotted wilt virus; TSWV). Despite their efficiency in controling insect pests, pesticides are limited by residence, cost and environmental burden. Therefore, a fixed-precision level sampling plan was developed. The sampling method for F. occidentalis adults in pepper greenhouses consists of spatial distribution analysis, sampling stop line, and control decision making. For sampling, the plant was divided into the upper part(180 cm above ground), middle part (120-160 cm above ground), and lower part (70-110 cm above ground). Through ANCOVA, the P values of intercept and slope were estimated to be 0.94 and 0.87, respectively, which meant there were no significant differences between values of all the levels of the pepper plant. In spatial distribution analysis, the coefficients were derived from Taylor's power law (TPL) at pooling data of each level in the plant, based on the 3-flowers sampling unit. F. occidentalis adults showed aggregated distribution in greenhouse peppers. TPL coefficients were used to develop a fixed-precision sampling stop line. For control decision making, the pre-referred action thresholds were set at 3 and 18. With two action thresholds, Nmax values were calculated at 97 and 1149, respectively. Using the Resampling Validation for Sampling Program (RVSP) and the results gained from the greenhouses, the simulated validation of our sampling method showed a reasonable level of precision.

Spatial Dispersion and Sampling of Adults of Citrus Red Mite, Panonychus citri(McGregor) (Acari: Tetranychidae) in Citrus Orchard in Autumn Season (감귤원에서 가을철 귤응애 성충의 공간분포와 표본조사)

  • 송정흡;김수남;류기중
    • Korean journal of applied entomology
    • /
    • v.42 no.1
    • /
    • pp.29-34
    • /
    • 2003
  • Dispersion pattern for adult citrus red mite (CRM), Panonychus citri (McGregor) using by Taylor's power law (TPL) and Iwao's patchiness regression (IPR) was determined to develop a monitoring method on citrus orchards, on Jeju, in Autumn season, during 2001 and 2002.CRM population was sampled by collecting leaves and fruits. The relationships of CRM adults between leaf and fruit were analyzed by different season. The regression equation for CRM adults between leaf (X) and fruit (Y) was ln(Y+1) : 1.029 ln(X+1) ( $r^2$ : 0.80). The density of CRM was higher on fruit than on leaf according to fruit maturing level. TPL provided better description of mean-variance relation-ship for the dispersion indices compared to IPR. Slopes and intercepts of TPL from leaf and fruit samples did not differ between sample units and surveyed years. Fixed-precision levels (D) of a sequential sampling plan were developed using Taylor's power law parameters generated from adults of CRM in leaf sample. Sequential sampling plans for adults of CRM were developed for decision making CRM population level based on the different action threshold levels (2.0,2.5 and 3.0 mites per leaf) with 0.25 precision. The maximum number of trees and required number of trees sampled on fixed sample size plan on 2.0,2.5 and 3.0 thresholds with 0.25 precision level were 19, 16 and 15 and their critical values T$_{critical}$ at were 554,609 and 659, respectively. were 554,609 and 659, respectively.

Spatial Distribution and Sampling Plan for Pink Citrus Rust Mite, Aculops pelekassi (Acari: Eriophyidae) in Citrus Orchard (감귤원에서 귤녹응애 공간분포 분석과 표본조사법 개발)

  • Song, Jeong-Heub;Hong, Soon-Yeong;Lee, Shin-Chan
    • Korean journal of applied entomology
    • /
    • v.51 no.2
    • /
    • pp.91-97
    • /
    • 2012
  • The dispersion indices, spatial pattern and sampling plan for pink citrus rust mite (PCRM), Aculops pelekassi, monitoring was investigated. Dispersion indices of PCRM indicated the aggregated spatial pattern. Taylor's power law provided better description of variance-mean relationship than Iwao's patchiness regression. Fixed-precision levels (D) of a sequential sampling plan were developed using by Taylor's power law parameters generated from PCRM on fruit sample (cumulated number of PCRM in $cm^2$ of fruit). Based on Kono-Sugino's empirical binomial the mean density per $cm^2$ could be estimated from fruit ratio with more than 12 rust mites per $cm^2$: $ln(m)=4.61+1.23ln[-ln(1-p_{12})]$. To determine the optimal tally threshold, the variance (var(lnm)) for mean (lnm) in Kono-Sugino equation was estimated. The lower and narrow ranged change of variance for esimated mean showed at a tally threshold of 12. To estimate PCRM mean density per $cm^2$ at fixed precision level 0.25, the required sample number was 13 trees, 5 fruits per tree and 2 points per fruit (total 130 samples).

Sampling Plan for Bemisia tabaci Adults by Using Yellow-color Sticky Traps in Tomato Greenhouses (시설토마토에서 황색트랩을 이용한 담배가루이 표본조사법)

  • Song, Jeong Heub;Lee, Kwang Ju;Yang, Young Taek;Lee, Shin Chan
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.375-380
    • /
    • 2014
  • The sweetpotato whitefly (SPW), Bemisia tabaci Gennadius, is a major pest in tomato greenhouses on Jeju Island because they transmit viral diseases. To develop practical sampling methods for adult SPWs, yellow-color sticky traps were used in commercial tomato greenhouses throughout the western part of Jeju Island in 2011 and 2012. On the basis of the size and growing conditions in the tomato greenhouses, 20 to 30 traps were installed in each greenhouse for developing a sampling plan. Adult SPWs were more attracted to horizontal traps placed 60 cm above the ground than to vertical trap placed 10 cm above the plant canopy. The spatial patterns of the adult SPWs were evaluated using Taylor's power law (TPL) and Iwao's patchiness regression (IPR). The results showed that adult SPWs were aggregated in each surveyed greenhouse. In this study, TPL showed better performance because of the coefficient of determination ($r^2$). On the basis of the fixed-precision level sampling plan using TPL parameters, more traps were required for higher precision in lower SPW densities per trap. A sequential sampling stop line was constructed using TPL parameters. If the treatment threshold was greater than 10 maximum adult SPWs on a trap, the required traps numbered 15 at a fixed-precision level of 0.25. In estimating the mean density per trap, the proportion of traps with two or more adult SPWs was more efficient than whole counting: ${\ln}(m)=1.19+0.90{\ln}(-{\ln}(1-p_T))$. The results of this study could be used to prevent the dissemination of SPW as a viral disease vector by using accurate control decision in SPW management programs.

Sequential Sampling Plan for Aphis gossypii (Hemiptera: Aphididae) based on Its Intra-plant Distribution Patterns in Greenhouse Cucumber at Different Growth Stages (온실재배 오이의 생육단계별 목화진딧물의 주내 분포 특성에 기초한 축차표본조사법)

  • Chung, Bu-Keun;Song, Jeong-Heub;Lee, Heung-Su;Choi, Byeong-Ryul
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.401-407
    • /
    • 2015
  • This study describes the development of a method for monitoring Aphis gossypii in greenhouse cucumber fields that was used during 2013 and 2014. The dispersion pattern of A. gossypii was determined by commonly used methods: Taylor's power law (TPL) and Iwao's patchiness regression (IPR). The sample unit was determined by linear regression analysis between mean density of sample unit versus whole plant. The optimum sample unit for different plant growth stages was two leaves (median and the lowest + 1 leaf) when the total number of leaves was less than nine, and three leaves (4th, 7th from canopy, and the lowest +1 leaf) when the total number of leaves was greater than nine. A. gossypii showed an aggregated distribution pattern, as the slopes of both TPL and IPR lines were greater than 1. TPL provided a better description of the mean-variance relationship than did IPR. The slopes and intercepts of TPL and IPR from leaf samples did not differ between the surveyed years. Fixed precision levels (D) for a sequential sampling plan were developed using Green's and Kuno's equations based on the number of aphid in a leaf sample. Green's method was more efficient than Kuno's to stop sampling. The number of samples needed to estimate the density of A. gossypii increased at higher D levels and lower mean densities. The cumulative number of aphids needed to stop sampling increased at higher D levels and with fewer plants sampled. Thus to estimate 10 aphids per leaf, 13 plants needed to be sampled, and the cumulative number of aphids to stop sampling was 131.

Efficient Occurrence Monitoring by Yellow Sticky Traps for Major Flying Pests in Strawberry Greenhouses (시설딸기 주요 비행해충의 황색끈끈이트랩 이용 효율적인 발생예찰)

  • Yang, Cheol Jun;Song, Jeong Heub;Yang, Young Taek;Kim, Hyo Jeong;Song, Min A;Jwa, Chang Sook
    • Korean journal of applied entomology
    • /
    • v.56 no.3
    • /
    • pp.309-314
    • /
    • 2017
  • Sampling plan using yellow sticky traps for the major strawberry flying pests - western flower thrips Frankliniella occidentalis adults, cotton aphid Aphis gossypii alate and greenhouse whitefly Trialeurodes vaporarium adults was developed to determine the initial occurrence time. The analyzed trap data were obtained from three commercial strawberry greenhouses for the whole growing season (September to May of the following year) during 2013 to 2017 in Jeju province. Three flying pests showed the aggregated distribution patterns resulted from commonly used regression techniques - Taylor's power law and Iwao's patchiness regression. Taylor's power law was better description of mean-variance relationship of the western flower thrips and the cotton aphid than Iwao's patchiness regression, otherwise greenhouse whitefly was better described by Iwao's patchiness regression. There were highly significant correlated among mean density per trap, maximum density and proportion of traps with more than 10 individuals. To estimate 4.0 heads of mean density per trap, the minimum number of traps were required 13 traps for western flower thrips, 11 traps for cotton aphid and 10 traps for greenhouse whitefly. The sequential sampling plans at the fixed precision level 0.25 were developed using parameters of Taylor's power law for western flower thrips and cotton aphid, and of Iwao's patchiness regression for greenhouse whitefly.