• Title/Summary/Keyword: Fixed bed reactor

Search Result 245, Processing Time 0.026 seconds

Removal of a High Load of Ammonia by a Marine Bacterium, Vibrio alginolyticus in Biofilter

  • Kim, Nam-Jin;Shoda, Makoto
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.316-322
    • /
    • 2002
  • A newly isolated heterotrophic marine bacterium, Vibrio alginolyticus, was used to remove a high load of ammonia gas under non-sterile condition. The cells were inoculated onto an inorganic packing material in a fixed-bed reactor (biofilter), and a high load of ammonia, in the range of ammonia gas concentration of 170 ppm to 880 ppm, was introduced continuously. Sucrose solution and 3% NaCl was supplied intermittently to supplement the carbon source and water to the biofilter. The average percentage of gas removed exceeded 85% for 107-day operation. The maximum removal capacity and the complete removal capacity were$19\;g-N\;kg^{-1}$ dry packing material $day^{-1}$ and $16\;g-N\;kg^{-1}$ dry packing material $day^{-1}$, respectively, which were about three times greater than those obtained in nitrifying sludge inoculated onto the same packing material. On day 82, the enhanced pressure drop was restored to the normal one by NaOH treatment, and efficient removal characteristics were later observed. During this operation, the non-sterile condition had no significantly adverse effect on the removability of ammonia by V. alginolyticus.

Decomposition of primary tar influenced by char particle types and reaction time during biomass gasification (바이오매스 가스화시 촤 입자 종류 및 반응시간에 따른 일차타르의 분해 특성)

  • Park, Jinje;Lee, Yongwoon;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.33-36
    • /
    • 2014
  • Gasification of biomass produces syngas containing CO, $H_2$ and/or $CH_4$, which can then be converted into energy or value-added fuels. One of key issues for efficient gasification is to minimize tar concentration in the syngas for use in a final conversion device such as gas engine. This study investigated the decomposition of primary tar by catalytic cracking using char as catalyst, of which the feature can be integrated into a fixed bed gasifier design. The pyrolysis vapor containing tar from pyrolysis of wood at $500^{\circ}C$ was passed through a reactor filled with or without char at $800^{\circ}C$ for a residence time of 1, 3 or 5 sec. Then, the condensable vapor (water and tar) and gases were analyzed for the yields and elemental composition. Four types of char particles with different microscopic surface area and pore size distribution: wood, paddy straw, palm kernel shell and activated carbon. The results were analyzed for the mass and carbon yields of tar and the composition of product gases to conclude the effects of char types and residence time.

  • PDF

Study of using Waste Industrial Catalyst for the Removal of Harmful Organic Compounds (유해 유기화합물의 제거를 위한 폐 산업용 촉매의 이용에 관한 연구)

  • Seo, Seong-Gyu;Kim, Sang-Chai
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.5
    • /
    • pp.663-670
    • /
    • 2004
  • The catalytic oxidation of benzene, toluene and xylene over a spent industrial catalyst (Pd-based) was investigated in a fixed bed flow reactor system. According to the priming condition, the properties of a spent Pd-based catalyst were characterized by XRD(X-ray diffraction). BET(Brunauer-Emmett-Teller) and ICP(Inductively coupled plasma). When air was used as a primer, optimum priming temperature was found to be 200$^{\circ}C$, and the catalytic activity decreased as the priming temperature increased. When a spent Pd-based catalyst primed with air at 200$^{\circ}C$ was re-treated with hydrogen at 200$^{\circ}C$, 300$^{\circ}C$ or 400$^{\circ}C$, respectively, the catalytic activity increased and thermal effect were negligible. $HNO_3$ aqueous solution priming resulted in slight decrease of the catalytic activity, with little effects on $HNO_3$ concentrations. The activity of a spent Pd-based catalyst with respect to VOC molecule was observed to follow sequence: xylene> toluene> benzene. Benzene. toluene and xylene could be removed to almost 100% by a spent Pd-based catalyst primed with hydrogen.

The Response Characteristics of the Hydrogen Peroxide Monopropellant Thruster as Injector and Catalyst Grain Size (인젝터 방식 및 촉매 알갱이 크기에 따른 과산화수소 단일추진제 추력기의 응답 특성)

  • An, Sung-Yong;Park, Dae-Jong;Chung, Seung-Mi;Kwon, Se-Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2009
  • The response characteristics of $H_2O_2$ monopropellant thrusters at a pulse mode were presented in this paper. A catalyst bed was fixed to $MnO_2$/$Al_2O_3$ to investigate the thruster design effect to response time. Three different thrusters (50 N class) having different injectors, ullage volumes, catalyst grain sizes, and reactor volumes were prepared to investigate the response characteristics. As a result, the ignition delay, pressure rising and tail-off time of case 2-2 thruster with 16-20 mesh catalyst size were 14, 108, 94 ms respectively, which were comparable to requirement of response time at commercial hydrazine thrusters.

A Study on Sorbent Application of Hard-Shelled Mussel Waste Shell on the Medium/small Scale Waste Incinerator and Flue Gas Desulfurization Process (중.소형 폐기물소각로 및 배연탈황공정용 홍합(Hard-Shelled Mussel) 패각페기물 Sorbent 적용에 관한 연구)

  • 정종현
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • The objective of this study is to investigate the waste recycling possibility, practicability, economic efficiency and acid gas sorbent use of the hard-shelled mussel. This study is to investigate the hydration/calcination reaction and fixed bed reactor. The physical-chemical characteristics of the hard-shelled mussel were analyzed by ICP SEM-EDX, BET and pore volume. Thus, the results could be summarized as follows; Hard-shelled mussel can be used as iron-manufacture and chemical sorbents considering more than 53.7% of the mussel is lime content. The SO$_2$removal efficiency of the hard-shelled mussel after calcined hydration increased thirty times as a result of the higher pore size, specific surface area and pore volume. Also, the CaO content, pore volume, pore size distribution and specific surface area greatly influenced the SO$_2$ and NOx removal reactivity. The optimum particle diameter average of hard-shelled mussel was $\pm$100 mesh, which was applied to the sorbent on the medium/small scale waste incinerator and flue gas desulfurization processes.

Oxidative Decomposition of TCE over TiO2-Supported Metal Oxide Catalysts (TiO2에 담지된 금속 산화물 촉매상에서 TCE 산화분해반응)

  • Yang Won-Ho;Kim Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.15 no.3
    • /
    • pp.221-227
    • /
    • 2006
  • Oxidative TCE decomposition over $TiO_2$-supported single and complex metal oxide catalysts has been conducted using a continuous flow type fixed-bed reactor system. Different types of commercial $TiO_2$ were used for obtaining the supported catalysts via an incipient wetness technique. Among a variety of titanias and metal oxides used, a DT51D $TiO_2\;and\;CrO_x$ would be the respective promising support and active ingredient for the oxidative TCE decomposition. The $TiO_2-based\;CrO_x$ catalyst gave a significant dependence of the catalytic activity in TCE oxidation reaction on the metal loadings. The use of high $CrO_x$ contents for preparing $CrO_x/TiO_2$ catalysts might produce $Cr_2O_3$ crystallites on the surface of $TiO_2$, thereby decreasing catalytic performance in the oxidative decomposition at low reaction temperatures. Supported $CrO_x$-based bimetallic oxide systems offered a very useful approach to lower the $CrO_x$ amounts without any loss in their catalytic activity for the catalytic TCE oxidation and to minimize the formation of Cl-containing organic products in the course of the catalytic reaction.

The Utilization of Waste Seashell for High Temperature Desulfurization

  • Kim, Young-Sik;Hong, Sung-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.136-140
    • /
    • 2010
  • The integrated gasification combined cycle (IGCC) is one of the most promising proposed processes for advanced electric power generation that is likely to replace conventional coal combustion. This emerging technology will not only improve considerably the thermal efficiency but also reduce or eliminate the environmentally adverse effects normally associated with coal combustion. The IGCC process gasifies coal under reducing conditions with essentially all the sulfur existing in the form of hydrogen sulfide ($H_2S$) in the product fuel gas. The need to remove $H_2S$ from coal derived fuel gases is a significant concern which stems from stringent government regulations and also, from a technical point of view and a need to protect turbines from corrosion. The waste seashells were used for the removal of hydrogen sulfide from a hot gas stream. The sulphidation of waste seashells with $H_2S$ was studied in a thermogravimetric analyzer at temperature between $600^{\circ}C$ and $800^{\circ}C$. The desulfurization performance of the waste seashell sorbents was experimentally tested in a fixed bed reactor system. Sulfidation experiments performed under reaction conditions similar to those at the exit of a coal gasifier showed that preparation procedure and technique, the type and the amount of seashell, and the size of the seashell affects the $H_2S$ removal capacity of the sorbents. The pore structure of fresh and sulfided seashell sorbents was analyzed using mercury porosimetry, nitrogen adsorption, and scanning electronmicroscopy.

Gas Reaction Characteristics of Waste Oyster Shell Sorbent

  • Jung, Jong-Hyeon;Shon, Byung-Hyun;Kim, Hyun-Gyu;Yoo, Kyung-Seun;Choung, Young-Hean;Choi, Suck-Gyu;Kim, Young-Sik
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.365-370
    • /
    • 2005
  • The objective of this study is to develop the sorbent of oyster shell, which can remove gaseous acid pollutants emitted from the incinerator and power plants. The physicochemical properties of prepared absorbents have been measured using ICP and BET Also, this study is to investigate the Hydration/calcination reaction in the fixed bed reactor. Thus, the results could be summarized as follows. Oyster shell can be used in powder type without former processing. It should be also noted that sulfation reactivity of oyster sample increases to about 5 times by calcination/hydration reaction due to the increase of specific surface area and pore volume. From these experiments, we have found that both $SO_2$ and $NO_x$ in simulated flue gas can be effectively removed by use of oyster absorbent.

  • PDF

Effects of $SiO_2$ on Catalytic Properties of Iron-Based Catalysts for Fischer-Tropsch Synthesis (FT 합성반응용 철촉매에 미치는 촉매특성에 미치는 $SiO_2$ 첨가효과)

  • Chun, Dong-Hyun;Kim, Hak-Joo;Hyun, Sun-Taek;Yang, Jung-Hoon;Lee, Ho-Tae;Yang, Jung-Il;Jung, Heon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.861-862
    • /
    • 2009
  • Precipitated iron-based catalysts are highly promising for the Fischer-Tropsch synthesis (FTS), in particular for the low temperature FTS below $280^{\circ}C$, because of their high activity and low cost. $SiO_2$ is an essential promoter for the precipitated iron-based catalysts to improve the attrition strength and physical stability. In this study, we carried out FTS over precipitated iron-based catalysts with and without $SiO_2$ in a fixed-bed reactor. The catalysts were prepared by a conventional co-precipitation method. In case of the catalysts with $SiO_2$, we used two comparative preparation methods, i.e., incorporation of $SiO_2$ before precipitation (denoted as precipitated $SiO_2$) and after precipitation (denoted as binder $SiO_2$), respectively. The addition of $SiO_2$ crucially affects both physico-chemical properties and catalytic peformance of precipitated iron-based catalysts.

  • PDF

The Behavior of Chlorobenzenes and Chlorophenols in Fly Ash by Thermal Treatment (소각잔사 중에 함유된 클로로벤젠과 클로로페놀의 열분해 거동)

  • Sim, Yeong-Suk;Lee, U-Geun;Kim, Jin-Beom
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.293-302
    • /
    • 1998
  • This study was performed to investigate the behavior of chlorobenzenes (CIBZS) and chlorophenols (CIPhs) in a thermally treated MSWI fly ash. The experiment was carried out in a fixed bed reactor at the temperature range of 300~$600^{\circ}C$. Reaction time range was between 30 and 120 minutes, and NB and 02 gases were used as carrier gas. The decomposition rate of CIBZS was more affected by reaction time than by the reaction temperature. The decomposition rate of CIPhs was affected by both parameters. Decomposition rate of CIBZS and CIPhs reached 80.4% and 96.6% at $600^{\circ}C$, 120 min, respectively. Considering the effect of O2 content, decomposition rate of CIBZS and CIPhs was the highest at 10% of O2 content. Declorination and decomposition reactions Pere investigated by analyzing homologue distribution. Higher chlorinated CIBZS and CIPhs homologue decreased but lower chlorinated compounds increased with the increase of temperature. Effect of O2 on the homologue distribution of these compounds was not clear in the range of our experiment conditions.

  • PDF