Purpose : BoS(Base of Skull) Frame, the fixation tool which is used for the proton of brain cancer increases the lateral penumbra by increasing the airgap (the distance between patient and beam jet), due to the collision of the beam of the posterior oblique direction. Thus, we manufactured the fixation tool per se for improving the limits of BoS frame, and we'd like to evaluate the utility of the manufactured fixation tool throughout this study. Materials and Methods : We've selected the 3 patients of brain cancer who have received the proton therapy from our hospital, and also selected the 6 beam angles; for this, we've selected the beam angle of the posterior oblique direction. We' ve measured the planned BoS frame and the distance of Snout for each beam which are planned for the treatment of the patient using the BoS frame. After this, we've proceeded with the set-up that is above the location which was recommended by the manufacturer of the BoS frame, at the same beam angle of the same patient, by using our in-house Bos frame fixation tool. The set-up was above 21 cm toward the superior direction, compared to the situation when the BoS frame was only used with the basic couch. After that, we've stacked the snout to the BoS frame as much as possible, and measured the distance of snout. We've also measured the airgap, based on the gap of that snout distance; and we've proceeded the normalization based on each dose (100% of each dose), after that, we've conducted the comparative analysis of lateral penumbra. Moreover, we've established the treatment plan according to the changed airgap which has been transformed to the Raystation 5.0 proton therapy planning system, and we've conducted the comparative analysis of DVH(Dose Volume Histogram). Results : When comparing the result before using the in-house Bos frame fixation tool which was manufactured for each beam angle with the result after using the fixation tool, we could figure out that airgap than when not used in accordance with the use of the in-house Bos frame fixation tool was reduced by 5.4 cm ~ 15.4 cm, respectively angle. The reduced snout distance means the airgap. Lateral Penumbra could reduce left, right, 0.1 cm ~ 0.4 cm by an angle in accordance with decreasing the airgap while using each beam angle in-house Bos frame fixation tool. Due to the reduced lateral penumbra, Lt.eyeball, Lt.lens, Lt. hippocampus, Lt. cochlea, Rt. eyeball, Rt. lens, Rt. cochlea, Rt. hippocampus, stem that can be seen that the dose is decreased by 0 CGE ~ 4.4 CGE. Conclusion : It was possible to reduced the airgap by using our in-house Bos frame fixation tool for the proton therapy; as a result, it was possible to figure out that the lateral penumbra reduced. Moreover, it was also possible to check through the comparative analysis of the treatment plan that when we reduce the lateral penumbra, the reduction of the unnecessary irradiation for the normal tissues. Therefore, Using the posterior oblique the Brain cancer proton therapy should be preceded by decreasing the airgap, by using our in-house Bos frame fixation tool; also, the continuous efforts for reducing the airgap as much as possible for the proton therapy of other area will be necessary as well.