• Title/Summary/Keyword: Five-Grain

Search Result 357, Processing Time 0.028 seconds

Synthesis and Characterization of BaTiO3 Powder by Solid State Method (고상반응법을 이용한 BaTiO3 합성 및 특성 평가)

  • Kim, Yong Jin;Choi, Moon Hee;Shin, Hyo Soon;Ju, Byeong-Kwon;Chun, Myoung Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.483-489
    • /
    • 2020
  • BaTiO3 powder was synthesized by a solid-state reaction using BaCO3 and TiO2. Different calcination temperatures (800℃, 850℃, 900℃, and 950℃) were set to investigate their effects on the properties of BaTiO3 powder. The synthesized BaTiO3 phase was confirmed to be a single phase by XRD, and the tetragonality (c/a) and crystallite size were calculated. Thereafter, each calcinated BaTiO3 was sintered at five different sintering temperatures (1,100℃, 1,150℃, 1,200℃, 1,250℃, and 1,300℃), and the tetragonality, density, porosity, dielectric constant, and grain size were measured. As the calcination temperature increased, the tetragonality and crystallite size also increased, to 1.008 and 66 nm, respectively, at 950℃. Moreover, most pellets showed increased density, dielectric constant, and tetragonality as the sintering temperature increased up to 1,250℃; the same parameters slightly decreased at 1,300℃. It is noteworthy that the tetragonality of BaTiO3 at 1,250℃ exhibits a very high c/a value of 1.0084. In addition, the grain size and dielectric constant measured near the Curie temperature increased as the sintering temperature increased.

Stabilization of Arsenic in Paddy Soils Using Stabilizers (논토양 내 비소 불용화에 대한 안정화물질의 처리 효과)

  • Kang, Min Woo;Oh, Sejin;Kim, Sung-Chul;Lee, Sang Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.1
    • /
    • pp.17-22
    • /
    • 2019
  • BACKGROUND: Soil contamination of As is a very sensitive environmental issue due to its adverse impact on human health and different characteristics with other heavy metals. With public awareness of As poisoning, there has been growing interest in developing guideline and remediation technologies for As-contaminated soil. The objective of this research was to evaluate the effectiveness of stabilizing amendments and soil dressing methods on the mobility of As in the contaminated rice paddy soils nearby mining area. METHODS AND RESULTS: Different amendments were mixed with surface and subsurface contaminated soils at a ratio of 3% (w/w) and monitored for five months. Three different extractants including 0.01M $CaCl_2$, TCLP, and PBET were used to examine As bioavailability in the soil and the concentration of As in rice grain was also measured with an inductively coupled plasma (ICP) spectroscopy. The results showed that all amendment treatments decreased As concentration compared to the control. Especially, coal mine drainage sludge (CMDS) treatment showed the highest efficiency of decreasing As concentration in the soil and rice grain. The values of Pearson correlation (r) between As concentrations in the soil and rice grain were 0.782, 0.753, and 0.678 for $CaCl_2$, TCLP, and PBET methods, respectively. Especially, $CaCl_2$ method was highly correlated between As concentrations of the soil and soil solution (r=0.719), followed by TCLP (r=0.706), PBET (r=0.561) methods. CONCLUSION: Stabilizing amendments can effectively reduce available As concentration in the soils as well as soil solution, and thereby potentially mitigating risks of crop contamination by As.

Exserohilum turcicum (Northern Corn Leaf Blight) Severity on Maize Hybrids and the Associated Crop Performance in O.R. Tambo District, Eastern Cape, South Africa

  • Mxolisi Mtyobile;Silindile Miya
    • Research in Plant Disease
    • /
    • v.29 no.2
    • /
    • pp.137-144
    • /
    • 2023
  • Exserohilum turcicum is a fungus that causes northern corn leaf blight (NCLB) and has deleterious effects on maize production globally. Therefore, it is prudent to mitigate the effects of NCLB using genetic diversity. The objective of this research was to assess the severity of NCLB disease on the growth and yield of various maize genotypes. A randomized complete block design field experiment, replicated three times, was conducted to evaluate the effect of E. turcicum on 10 maize hybrids. Percent disease index, plant height, and leaf area were recorded at the silk stage. Cob weight, grain fresh weight, and grain yields were determined at harvest maturity. All measured parameters were significantly different (P<0.05) between the maize hybrids. Of the 10 genotypes, four (PAN 4R-528R, PAN 4R-728BR, PAN 3R-724BR, and P1788BR) were susceptible, five (DKC74-74BR, PAN 5R-582R, PAN 5R-890R, PAN 5R-854R, and PAN 5R-590R) were moderately susceptible, and one (DKC80-40BR) was moderately resistant. DKC80-40BR exhibited greater cob weight, while DKC74-74BR was superior in all other plant growth and yield components. Interestingly, although not significant (P>0.05) and high, maize growth and yield parameters had negative correlations with disease incidence, except for grain fresh weight. Therefore, DKC80-40BR may be selected for cultivation in areas prone to NCLB to reduce maize susceptibility to the disease, while DKC74-74BR may improve crop performance. These hybrids could be considered as potential sources of resistance or tolerance to NCLB for further validation by plant breeders.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Studies on Grain Filling and Quality Changes of Hard and Soft Wheat Grown under the Different Environmental Conditions (환경 변동에 따른 경ㆍ연질 소맥의 등숙 및 품질의 변화에 관한 연구)

  • Young-Soo Han
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.17
    • /
    • pp.1-44
    • /
    • 1974
  • These studies were made at Suwon in 1972 and at Suwon, Iri, and Kwangju in 1973 to investigate grain filling process and variation of grain quality of NB 68513 and Caprock as hard red winter wheat, Suke #169 as soft red winter wheat variety and Yungkwang as semi-hard winter variety, grown under-three different fertilizer levels and seeding dates. Other experiments were conducted to find the effects of temperature, humidity and light intensity on the grain filling process and grain quality of Yungkwang and NB 68513 wheat varieties. These, experiments were conducted at Suwon in 1973 and 1974. 1. Grain filling process of wheat cultivars: 1) The frequency distribution of a grain weight shows that wider distribution of grain weight was associated with large grain groups rather than small grain group. In the large grain groups, the frequency was mostly concentrated near mean value, while the frequency was dispersed over the values in the small grain group. 2) The grain weight was more affected by the grain thickness and width than by grain length. 3) The grain weight during the ripening period was rapidly increased from 14 days after flowering to 35 days in Yungkwang and from 14 days after flowering to 28 days in NB 68513. The large grain group, Yungkwang was rather slowly increased and took a longer period in increase of endosperm ratio of grain than the small grain group, NB 68513. 4) In general, the 1, 000 grain weight was reduced under high temperature, low humidity, while it was increased under low temperature and high humidity condition, and under high temperature and humidity condition. The effect of shading on grain weight was greater in high temperature than in low temperature condition and no definite tendency was found in high humidity condition. 5) The effects of temperature, humidity and shading on 1, 000 grain weight were greater in large-grain group, Yungkwang than in small grain group, NB 68513. Highly significant positive correlation was found between 1, 000 grain weight and days to ripening. 6) The 1, 000 grain weight and test weight were increased more or less as the fertilizer levels applied were increased. However, the rate of increasing 1, 000 grain weight was low when fertilizer levels were increased from standard to double. The 1, 000 grain weight was high when planted early. Such tendency was greater in Suwon than in Kwangju or Iri area. 2. Milling quality: 7) The milling rate in a same group of varieties was higher under the condition of low temperature, high humidity and early maturing culture which were responsible for increasing 1, 000 grain weight. No definite relations were found along with locations. 8) In the varieties tested, the higher milling rate was found in large grain variety, Yungkwang, and the lowest milling rate was obtained from Suke # 169, the small grain variety. But the small grained hard wheat variety such as Caprock and NB 68513 showed higher milling rate compared with the soft wheat variety, Suke # 169. 9) There were no great differences of ash content due to location, fertilizer level and seeding date while remarkable differences due to variety were found. The ash content was high in the hard wheat varieties such as NB 68513, Caprock and low in soft wheat varieties such as Yungkwang and Suke # 169. 3. Protein content: 10) The protein content was increased under the condition of high temperature, low humidity and shading, which were responsible for reduction of 1, 000 grain weight. The varietal differences of protein content due to high temperature, low humidity and shading conditions were greater in Yungkwang than in NB 68513. 11) The high content of protein in grain within one to two weeks after flowering might be due to the high ratio of pericarp and embryo to endosperm. As grains ripen, the effects of embryo and pericarp on protein content were decreased, reducing protein content. However, the protein content was getting increased from three or four weeks after flowering, and maximized at seven weeks after flowering. The protein content of grain at three to four weeks after flowering increased as the increase of 1, 000 grain weight. But the protein content of matured grain appeared to be affected by daily temperature on calender rather than by duration of ripening period. 12) Highly significant positive correlation value was found between the grain protein content and flour protein content. 13) The protein content was increased under the high level of fertilizers and late seeding. The local differences of protein content were greater in Suwon than in Kwangju and Iri. 14) Protein content in the varieties tested were high in Yungkwang, NB 68513 and Caprock, and low in Suke # 169. However, variation in protein content due to the cultural methods was low in Suke # 169. 15) Protein yield per unit area was increased in accordance with increase of fertilizer levels and early maturing culture. However, nitrogen fertilizer was utilized rather effectively in early maturing culture and Yungkwang was the highest in protein yield per unit area. 4. Physio-chemical properties of wheat flour: 16) Sedimentation value was higher under the conditions of high temperature, low humidity and high levels of fertilizers than under the conditions of low temperature, high moisture and low levels of fertilizers. Such differences of sedimentation values were more apparent in NB 68513 and Caprock than Yungkwang and Suke # 169. The local difference of sedimentation value was greater in Suwon than in Kwangju and Iri. Even though the sedimentation value was highly correlated with protein content of grain, the high humidity was considered one of the factors affecting sedimentation value. 17) Changes of Pelshenke values due to the differences of cultural practices and locations were generally coincident with sedimentation values. 18) The mixing time required for mixogram was four to six minutes in NB 68513, five to seven minutes in Cap rock. The great variation of mixing time for Yungkwang and Suke # 169 due to location and planting conditions was found. The mixing height and area were high in hard wheat than in soft wheat. Variation of protein content due to cultural methods were inconsistent. However, the pattern of mixogram were very much same regardless the treatments applied. With this regard, it could be concluded that the mixogram is a kind of method expressing the specific character of the variety. 19) Even though the milling property of NB 68513 and Caprock was deteriorated under either high temperature and low humidity of high fertilizer levels and late seeding conditions, baking quality was better due to improved physio-chemical properties of flour. In contrast, early maturing culture deteriorated physio-chemical properties, milling property of grain and grain protein yield per unit area was increased. However, it might be concluded that the hard wheat production of NB 68513 and Caprock for baking purpose could be done better in Suwon than in Iri or Kwangju area. 5. Interrelationships between the physio-chemical characters of wheat flour: 20) Physio-chemical properties of flour didn't have direct relationship with milling rate and ash content. Low grain weight produced high protein content and better physio-chemical flour properties. 21) In hard wheat varieties like NB 68513 and Caprock, protein content was significantly correlated with sedimentation value, Pelshenke value and mixing height. However, gluten strength and baking quality were improved by the increased protein content. In Yungkwang and Suk # 169, protein content was correlated with sedimentation value, but no correlations were found with Pelshenke value and mixing height. Consequently, increase of protein content didn't improve the gluten strength in soft wheat. 22) The highly significant relationships between protein content and gluten strength and sedimentation . value, and between Pelshenke value, mixogram and gluten strength indicated that the determination of mixogram and Pelshenke value are useful for de terming soft and hard type of varieties. Determination of sedimentation value is considered useful method for quality evaluation of wheat grain under different cultural practices.

  • PDF

Physico-ecological Studies on Korean Seed-mustard I. Effects of Varieties and Seeding Date on the Variation of Agronomic Traits (한국산 개자(Brassica juncea)의 재배학적 특성연구 I. 수집품종의 특성 및 파종기 차이에 따른 주요형질의 변이)

  • 이종일;이상래;최형국;권병선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.30 no.2
    • /
    • pp.146-153
    • /
    • 1985
  • To investigate the possibility of improvement of seed mustard varieties, these experiments were conducted at Muan in Chonranamdo for three years with five local seed mustard varieties and seeding dates. Local varieties collected from Seoul, Cheju and introduced from Japan showed earlier bolting date while Yungsanpo and Suweon varieties bolted later and Suweon variety exhibited the latest maturity. Suweon variety had the shortest plant height with higher number of grains per pod. Seoul and Yungsanpo varieties had more total branch numbers than others. There was no varietal difference in grain weight, pod length and one liter weight. Grain yield per 10a was highest in Seoul variety by 247.5kg. Late seeding date delayed the bolting and flowering date while plant height, total branch numbers, pod numbers per ear and grain number per pod were decreased. The magnitude of varietal response to seeding date was varied greatly with traits. Grain weights per liter, 1,000 grain weight, pod lengths, oil contents, and fatty acid compositions were not affected by the different seeding dates.

  • PDF

A Study on Transportation Characteristics of Debris dependent on Geologic Conditions (지질조건에 따른 사태물질 이동특성 고찰)

  • Chae Byung-Gon;Kim Won-Young;Lee Choon-Oh;Kim Kyeong-Su;Cho Yong-Chan;Song Young-Suk
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.185-199
    • /
    • 2005
  • Properties of sliding materials are dependent on the lithology because debris is the product of rock weathering processes. In order to characterize transportation behavior of debris dependent of debris types, this study selected 26 debris flows over three areas composed with different rock weathering types and topographic conditions. Analyses of lithology, weathering, and topographic characteristics were performed by detailed field survey. Based on the field survey data, transportation behavior of debris was studied at the aspect of the relationship of grain size and volume of debris as well as topographic conditions. According to the study results, change of slope angle is very influential factor on runout distance of debris among the topographic factors. Because the sliding velocity and the energy of debris are frequently changed and more irregular on an undulating slope, the unout distance of debris is larger than that of an uniformly dipping slope. Runout distance of debris is also influenced by volume and grain size of debris. Volume of debris in the gabbro is four or five times larger than that of the granite area because it is controlled by the lithology. Considered with grain size distribution, runout distance of debris is longer in the gabbro area which is composed with irregular grain size bearing large corestones than that in the medium grained granite area.

Effect of Planting Time on Seed Production of Vegetable Soybean at Different Locations (풋콩 재배지에 따른 파종시기가 종자생육에 미치는 영향)

  • Baek, In-Youl;Shin, Doo-Chull;Park, Chang-Kie;Lee, Jin-Mo;Suh, Hyung-Soo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.40 no.1
    • /
    • pp.44-51
    • /
    • 1995
  • This investigation was conducted to determine the effect of the optimum planting date and place for good seed production on growth variation, grain yields, different of variety, infection of seed by fungi, and seed germination and vigor after room storage. Early maturity Korean soybean variety, Keunolkong, and introduced vegetable soybean variety, Fukura-edamame, were planted at field of YAES. and high cool land of Sajapyong in Milyang(altitude, 850m) on May 15 (early), June 15 (mid.), and July 15 (late) in 1991. The emergence and vegetative period gradually increased in the early planting date. The grain yield, seed weight, pod number, healthy grain yield also increased when Keunolkong was planted on early date. The healthy seed rate, Keunolkong increased in the early planting date, whereas that of Fukura also increased in the late planting date. Infection ratio of grain to phomopsis seed decay (Phomopsis spp. ' Diaporthe phaseolorum) in Fukura steadily increased in the early planting date. Infection ratio of grain to purple seed stain (Cercospora kikuchii) generally increased in the mid and late planting date. The seed germination and seedling vigor after room storage from five to six months gradually increased in the late planting date. And seed germination of Fukura rapidly decreased in the early planting date. Therefore, the optimum planting date for good seed production in early maturity vegetable soybean was June 15 in terms of harvesting time avoid a high temprature and humidity.

  • PDF

The distribution of activation energy and frequency factor for coal pyrolysis and char-air reaction (열분해 및 촤 - 공기 반응시의 활성화 에너지 및 빈도계수 분포)

  • Park, Ho-Young;Kim, Young-Joo
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • The experimental work has been carried out for the study of pyrolysis and char-air reaction of five coals used in Y power station in Korea. For five coals, the characteristics of pyrolyis and char reaction have been investigated with TGA, and their kinetic parameters were obtained and compared each other. The order of pyrolysis rate for five coals were as follows : Peabody, Flame, MIP, Indominco, Elk valley. The behavior of char - air reaction for five coal chars have been successfully described by the grain model. The rate of char-air reaction gave the maximum value for Flame coal char, on the while Elk valley coal char had the minimum value. For the reaction temperature over 1,000K, Flame coal char - air reaction was very fast compared with other coal chars.

A Study on the Evaluation of Food and Nutrient Intake of the High School Girls in Iksan and Seoul Cities (익산시와 서울시 여고생의 식품 및 영양소 섭취 평가에 관한 연구)

  • Cha, Kyung-Ok
    • Culinary science and hospitality research
    • /
    • v.13 no.2
    • /
    • pp.81-97
    • /
    • 2007
  • To assess the food intake and diet quality by the interrelationship of DDS and DVS of high school girls, this dietary survey was conducted with 253 subjects living in Iksan and Seoul areas using a 24-hour recall method. The average amount of total food intake was 1,133.2 g, with 79.9% of food intake being supplied by vegetable food and 20.1% by animal food and higher in Seoul area. The food consumed most frequently was rice, green onion, garlic, soy sauce, sesame oil, onion, and Kimchi. The food consumed in the largest amounts were rice(303.3 g), milk(62.2 g), and Kimchi(53.4 g). Diet quality was assessed by food group pattern, dietary diversity score(DDS), and dietary variety score(DVS). When investigating the consumption pattern of major five food groups(grain, meat, dairy, fruit, vegetable groups), nobody consumed all five food groups in each meal. The groups most frequently missing were fruits and dairy products. The average number of food consumed per day was 12.1(DVS) and Iksan area scored lower(11.7) on DVS than Seoul area(12.6). The higher DDS and DVS of subjects were, the more MAR and NAR of energy, calcium, vitamin A and C increased. The number of major food groups(DDS)(p<0.01, P<0.05) and that of food items (DVS)(p<0.01) correlated positively NAR(nutrient adequacy ratio) and MAR (mean adequacy ratio) significantly.

  • PDF