• 제목/요약/키워드: Five level inverter

검색결과 48건 처리시간 0.022초

고성능 공통암 IHCML 인버터를 위한 새로운 벡터 제어 방식 (A New Simplified Vector Control For A High Performance Common-Arm IHCML Inverter)

  • 송성근;박성준;남해곤;김광헌
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1071-1079
    • /
    • 2007
  • In this paper, a novel space vector control method for isolated multi-level inverter using 3-phase low frequency transformers is proposed. This method is based on the simplification of the space-vector diagram of a five-level inverter using calculated table into fully programming method. The execution time of the proposed method is about same as that of the method using calculated table. Also, the proposed method is easily applied to other case level inverter. We applied this method into the 3-phase IHCML inverter using common arm. It makes possible to use a single DC power source due to employing low frequency transformers. In this inverter, the number of transformers could be reduced compare with an exiting 3-phase multi-level inverter using single phase transformer. In addition, this method generates very low harmonic distortion operation with nearly fundamental switching frequency. Finally, We tested multi-level inverter to clarify electric circuit and reasonableness through Matlab simulation and experiment by using prototype inverter.

Modeling and Experimental Validation of 5-level Hybrid H-bridge Multilevel Inverter Fed DTC-IM Drive

  • Islam, Md. Didarul;Reza, C.M.F.S.;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.574-585
    • /
    • 2015
  • This paper aims to improve the performance of conventional direct torque control (DTC) drives proposed by Takahashi by extending the idea for 5-level inverter. Hybrid cascaded H-bridge topology is used to achieve inverter voltage vector composed of 5-level of voltage. Although DTC is very popular for its simplicity but it suffers from some disadvantages like- high torque ripple and uncontrollable switching frequency. To compensate these shortcomings conventional DTC strategy is modified for five levels voltage source inverter (VSI). Multilevel hysteresis controller for both flux and torque is used. Optimal voltage vector selection from precise lookup table utilizing 12 sector, 9 torque level and 4 flux level is proposed to improve DTC performance. These voltage references are produced utilizing a hybrid cascaded H-bridge multilevel inverter, where inverter each phase can be realized using multiple dc source. Fuel cells, car batteries or ultra-capacitor are normally the choice of required dc source. Simulation results shows that the DTC drive performance is considerably improved in terms of lower torque and flux ripple and less THD. These have been experimentally evaluated and compared with the basic DTC developed by Takahashi.

25MW급 대용량 멀티레벨 인버터의 시뮬레이션 기반 손실해석과 출력특성 비교 분석 (Simulation based Comparative Loss Analysis and Output Characteristic for 25MW Class of High Power Multi-level Inverters)

  • 김이김;박찬배;백제훈;곽상신
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.337-343
    • /
    • 2015
  • The multi-level inverters are highly efficient for high-power and medium-voltage AC driving applications, such as high-speed railway systems and renewable energy resources, because such inverters generate lower total harmonic distortion (THD) and electromagnetic interface (EMI). Lower switching stress occurs on switching devices compared with conventional two-level inverters. Depending on the multi-level inverter topology, the required components and number of switching devices are different, influencing the overall efficiency. Comparative studies of multi-level inverters based on loss analysis and output characteristic are necessary to apply multi-level inverters in high-power AC conversion systems. This paper proposes a theoretical loss analysis method based on piecewise linearization of characteristic curves of power semiconductor devices as well as loss analysis and output performance comparison of five-level neutral-point clamped, flying capacitor inverters, and high-level cascaded H-bridge multi-level inverters.

A Generalized Loss Analysis Algorithm of Power Semiconductor Devices in Multilevel NPC Inverters

  • Alemi, Payam;Lee, Dong-Choon
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2168-2180
    • /
    • 2014
  • In this paper, a generalized power loss algorithm for multilevel neutral-point clamped (NPC) PWM inverters is presented, which is applicable to any level number of multilevel inverters. In the case of three-level inverters, the conduction loss depends on the MI (modulation index) and the PF (power factor), and the switching loss depends on a switching frequency, turn-on and turn-off energy. However, in the higher level of inverters than the three-level, the loss of semiconductor devices cannot be analyzed by conventional methods. The modulation depth should be considered in addition, to find the different conducting devices depending on the MI. In a case study, the power loss analysis for the three- and five-level NPC inverters has been performed with the proposed algorithm. The validity of the proposed algorithm is verified by simulation for the three-and five-level NPC inverters and experiment for three-level NPC inverter.

중전압 응용을 위한 새로운 하이브리드 5-레벨 인버터 (A Novel Hybrid Five-Level Inverter for Medium-Voltage Applications)

  • 다오녹닷;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.485-486
    • /
    • 2016
  • This paper proposes a new hybrid five-level voltage-source inverter topology, based on the conventional five-level active neutral-point-clamped topology (5L-ANPC), where the lower number of switching devices is required, resulting in saving the cost. The operating principle and control method of the proposed topology is described. The comparison of THD, power losses, loss distribution, and cost of components are evaluated among the proposed topology, the 5L-ANPC and 5L-DCI (diode-clamped inverters) topology.

  • PDF

A Novel Analytical Method for Selective Harmonic Elimination Problem in Five-Level Converters

  • Golshan, Farzad;Abrishamifar, Adib;Arasteh, Mohammad
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.914-922
    • /
    • 2017
  • Multilevel converters have attracted a lot of attention in recent years. The efficiency parameters of a multilevel converter such as the switching losses and total harmonic distortion (THD) mainly depend on the modulation strategy used to control the converter. Among all of the modulation techniques, the selective harmonic elimination (SHE) method is particularly suitable for high-power applications due to its low switching frequency and high quality output voltage. This paper proposes a new expression for the SHE problem in five-level converters. Based on this new expression, a simple analytical method is introduced to determine the feasible modulation index intervals and to calculate the exact value of the switching angles. For each selected harmonic, this method presents three-level or five-level waveforms according to the value of the modulation index. Furthermore, a flowchart is proposed for the real-time implementation of this analytical method, which can be performed by a simple processor and without the need of any lookup table. The performance of the proposed algorithm is evaluated with several simulation and experimental results for a single phase five-level diode-clamped inverter.

Common-Mode Voltage Elimination with an Auxiliary Half-Bridge Circuit for Five-Level Active NPC Inverters

  • Le, Quoc Anh;Park, Do-Hyeon;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • 제17권4호
    • /
    • pp.923-932
    • /
    • 2017
  • This paper proposes a novel scheme which can compensate the common-mode voltage (CMV) for five-level active neutralpoint clamped (5L-ANPC) inverters, which is based on modifying the space vector pulse width modulation (SVPWM) and adding an auxiliary leg to the inverter. For the modified SVPWM, only the 55 voltage vectors producing low CMV values among the 125 possible voltage vectors are utilized, which varies over the three voltage levels of $-V_{dc}/12$, 0 V, and $V_{dc}/12$. In addition, the compensating voltage, which is injected into the 5L-ANPC inverter system to cancel the remaining CVM through a common-mode transformer (CMT) is generated by the additional NPC leg. By the proposed method, the CMV of the inverter is fully eliminated, while the utilization of the DC-link voltage is not decreased at all. Furthermore, all of the DC-link and flying capacitor voltages of the inverter are well controlled. Simulation and experimental results have verified the validity of the proposed scheme.

New Generalized SVPWM Algorithm for Multilevel Inverters

  • Kumar, A. Suresh;Gowri, K. Sri;Kumar, M. Vijay
    • Journal of Power Electronics
    • /
    • 제18권4호
    • /
    • pp.1027-1036
    • /
    • 2018
  • In this paper a new generalized space vector pulse width modulation scheme is proposed based on the principle of reverse mapping to drive the switches of multilevel inverters. This projected scheme is developed based on the middle vector of the subhexagon which holds the tip of the reference vector, which plays a major role in mapping the reference vector. A new approach is offered to produce middle vector of the subhexagon which holds tip of the reference vector in the multilevel space vector plane. By using middle vector of the subhexagon, reference vector is linked towards the inner two level sub-hexagon. Then switching vectors, switching sequence and dwell times corresponding to a particular sector of a two-level inverter are determined. After that, by using the two level stage findings, the switching vectors related to exact position of the reference vector are directly generated based on principle of the reverse mapping approach and do not need to be found at n level stage. In the reverse mapping principle, the middle vector of subhexagon is added to the formerly found two level switching vectors. The proposed generalized algorithm is efficient and it can be applied to an inverter of any level. In this paper, the proposed scheme is explained for a five-level inverter and the performance is analyzed for five level and three level inverters through MATLAB. The simulation results are validated by implementing the propose scheme on a V/f controlled three-level inverter fed induction motor using dSPACE control desk.

Fault Tolerant Operation of CHB Multilevel Inverters Based on the SVM Technique Using an Auxiliary Unit

  • Kumar, B. Hemanth;Lokhande, Makarand M.;Karasani, Raghavendra Reddy;Borghate, Vijay B.
    • Journal of Power Electronics
    • /
    • 제18권1호
    • /
    • pp.56-69
    • /
    • 2018
  • In this paper, an improved Space Vector Modulation (SVM) based fault tolerant operation on a nine-level Cascaded H-Bridge (CHB) inverter with an additional backup circuit is proposed. Any type of fault in a power converter may result in a power interruption and productivity loss. Three different faults on H-bridge modules in all three phases based on the SVM approach are investigated with diagrams. Any fault in an inverter phase creates an unbalanced output voltage, which can lead to instability in the system. An additional auxiliary unit is connected in series to the three phase cascaded H-bridge circuit. With the help of this and the redundant switching states in SVM, the CHB inverter produces a balanced output with low harmonic distortion. This ensures high DC bus utilization under numerous fault conditions in three phases, which improves the system reliability. Simulation results are presented on three phase nine-level inverter with the automatic fault detection algorithm in the MATLAB/SIMULINK software tool, and experimental results are presented with DSP on five-level inverter to validate the practicality of the proposed SVM fault tolerance strategy on a CHB inverter with an auxiliary circuit.

Subsection Synchronous Current Harmonic Minimum Pulse Width Modulation for ANPC-5L Inverter

  • Feng, Jiuyi;Song, Wenxiang;Xu, Yuan;Wang, Fei
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1872-1882
    • /
    • 2017
  • Medium voltage drive systems driven by high-power multi-level inverters operating at low switching frequency can reduce the switching losses of the power device and increase the output power. Employing subsection synchronous current harmonic minimum pulse width modulation (CHMPWM) technique can maintain the total harmonic distortion of current at a very low level. It can also reduce the losses of the system, improve the system control performance and increase the efficiency of DC-link voltage accordingly. This paper proposes a subsection synchronous CHMPWM approach of active neutral point clamped five-level (ANPC-5L) inverter under low switching frequency operation. The subsection synchronous scheme is obtained by theoretical calculation based on the allowed maximum switching frequency. The genetic algorithm (GA) is adopted to get the high-precision initial values. So the expected switching angles can be achieved with the help of sequential quadratic programming (SQP) algorithm. The selection principle of multiple sets of the switching angles is also presented. Finally, the validity of the theoretical analysis and the superiority of the CHMPWM are verified through both the simulation results and experimental results.