• Title/Summary/Keyword: Fittings

Search Result 180, Processing Time 0.022 seconds

Technology Trend of Small Poppet Type Check Valve for Aerospace Application (항공우주용 소형 포펫 체크밸브 기술 동향)

  • Yoo, Jae-Han;Lee, Soo-Yong
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.158-164
    • /
    • 2011
  • Check valves developed for aerospace applications and commercially available for the applications are investigated. The examples include the ones for launch vehicles, SSME (Space Shuttle Main Engine) and GSE (Ground Support Equipment) purges developed by NASA, requiring high reliability, and the ones by KARI. Also the commercial ones for room and cryogenic temperatures by major valve US companies. Relations of design factors such as seal materials and spring rate to principal performances like operating temperature/pressure and cracking pressure are explained. Then potential operational problems such as chatter and contaminations are explained. Also, filters, fittings for end connections and cleanliness requirements for the applications are considered.

  • PDF

A New Modeling Methodology of TFBAR (박막공진기에 대한 새로운 모델링 기법)

  • 김종수;구명권;육종관
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.103-109
    • /
    • 2004
  • In this paper, a new modeling methodology of thin film bulk acoustic resonator(TFBAR) is presented and the formulations of each lumped element in the model are also introduced. The new model is based upon the Mason model that is a reasonable model to explain the physical characteristics of unit TFBAR. After simplifying the modified Mason model with an additional dielectric loss term, the new model similar to Modified Butterworth-Van Dyke(MBVD) model is complete. The proposed model has three optimization variables which is half of the MBVD model. As a result, the curve fittings for the measured data are much faster and more accurate than any other conventional models. Moreover, it is very useful to design the bandpass filters or voltage controlled oscillators due to the design parameters, such as resonant and anti-resonant frequency, which can reflect the intentions of designer in the model.

A Study on the Estimation of Separation Forces of a Power Steering Hose Assembly (동력조향장치 호스 조립품의 이탈력 추정에 관한 연구)

  • Kim Hyungje;Kim Byungtak;Yoon Moonchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.190-196
    • /
    • 2005
  • The power steering hose assembly is usually manufactured through the swaging process, which is conducted to connect a hose with metal fittings. In this process the hose is inserted into metal components, the sleeve and the nipple, and compressed in the radial direction by the jaws to clamp the hose with metal components. In case that the clamping force is small, the oil in the hose can leak locally under the severe operating conditions. To confirm the clamping force requirements, the measurement of separation force in longitudinal direction of the hose is usually performed. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the separation fDrce. The results interpretations are ffcused on the inner rubber component, and also a formula is proposed to estimate the separation farces with respect to friction coefficients.

Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3

  • Nath, K. Amar;Prasad, K.;Chandra, K.P.;Kulkarni, A.R.
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.119-131
    • /
    • 2013
  • Impedance and electrical conduction studies of $Ba(Nd_{1/2}Nb_{1/2})O_3$ ceramic prepared using conventional high temperature solid-state reaction technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group $Pm\bar{3}m$. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of compound. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealized model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in $Ba(Nd_{1/2}Nb_{1/2})O_3$. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.

Numerical and Experimental Study to Improve Thermal Sensitivity and Flow Control Accuracy of Electronic Thermostat in the Engine for Hybrid Vehicle (하이브리드 자동차용 엔진 내부의 전자식 수온조절기의 감온성 및 유량제어 정확도 향상을 위한 수치 및 실험적 연구)

  • Jeong, Soo-Jin;Jeong, Jinwoo;Ha, Seungchan
    • Journal of ILASS-Korea
    • /
    • v.26 no.3
    • /
    • pp.135-141
    • /
    • 2021
  • High-efficient HEV Engine cooling systems reflects variable coolant temperature because it can decrease the hydrodynamic frictional losses of lubricated engine parts in light duty conditions. In order to safely raise the operating temperature of passenger cars to a constant higher level, and thus optimize combustion and all accompanying factors, a new thermostat technology was developed : the electronically map-controlled thermostat. In this work, various crystalline plastics such as polyphthalamide (PPA) and polyphenylenesulfide (PPS) mixed with various glass fiber amounts were introduced into plastic fittings of automotive electronic controlled thermostat for the purpose of suppressing influx of coolant into the element and undesirable opening during hot soaking. Skirt was installed around element frame of automotive electronic controlled thermostat for improving thermal sensitivity in terms of response time, hysteresis and melting temperature. To validate the effectiveness and optimum shape of skirt, thermal sensitivity test and three-dimensional CFD simulation have been performed. As a consequence, important improvement in thermal sensitivity with less than 3℃ of maximum coolant temperature between opening and engine inlet was obtained.

Noise Reduction Algorithm For The Detection of Fine Ion Signals in Residual Gas Analyzer (잔류가스분석기의 질량 스펙트럼 검출 성능 향상을 위한 잡음제거 알고리즘)

  • Heo, Gyeongyong;Choi, Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.102-107
    • /
    • 2019
  • This paper proposes a method to improve the mass spectral detection performance of the residual gas analyzer. By improving the mode estimation method for setting the threshold value and improving the additive noise elimination method, it is possible to detect mass spectrums having low peak values of the threshold level difficult to distinguish from noise. Ion signal blocks for each mass index with noise removed by the improved method are effective for eliminating invalid ion signals based on the linear and quadratic fittings. The mass spectrum can be obtained from the quadratic fitted curves for the reconstructed ion signal block using only the valid ion signals. In addition, the resolution of the mass spectrum can be improved by correcting the error caused by the shift of the spectral peak position. To verify the performance of the proposed method, computer simulations were performed using real ion signals obtained from the residual gas analysis system under development. The simulation results show that the proposed method is valid.

A Study on the Physical Measurement Method for the Development of Bicycle Fitting Integrated System

  • Shon, Gyoung-Hoan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.3
    • /
    • pp.123-133
    • /
    • 2019
  • Bicycle fitting used to depend on empirical adherence of bicycle Peter and intuitive judgment by hand, but recent developments in industry and the Fourth Industrial Revolution have continuously developed other related tools that can be applied to bicycle fitting. Depending on these circumstances, bicycle fitting technology is also developing, and due to the difficulty of the technicians, there is a limit to popularizing. The Bicycle Integrated Fitting System has the need for this study to make these problems easy for anyone to operate by the system of manual. The purpose of this study is to examine the methods of physical sizing among the various stages of developing these systems. Accurate physical measurements can improve the efficiency of bicycle riding and minimize the injury of bicycle risers issued by incorrect fittings. Thus, in this study, physical measurement methods for bicycle fitting were derived by body region and applied to the post-measurement fitting as well as the location and method of measurement. It has prepared a basis for establishing a core database for physical measurement of development of integrated bicycle fitting system. Research was conducted to enhance understanding and utilization of users after system development and results were derived for the purpose of the study. Research was conducted to establish a database for the development of a bicycle integrated fitting system, and future research on bicycle fitting methods, application of the system, and hardware development should be carried out.

Prediction of Extreme Sloshing Pressure Using Different Statistical Models

  • Cetin, Ekin Ceyda;Lee, Jeoungkyu;Kim, Sangyeob;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.185-194
    • /
    • 2018
  • In this study, the extreme sloshing pressure was predicted using various statistical models: three-parameter Weibull distribution, generalized Pareto distribution, generalized extreme value distribution, and three-parameter log-logistic distribution. The estimation of sloshing impact pressure is important in design of liquid cargo tank in severe sea state. In order to get the extreme values of local impact pressures, a lot of model tests have been carried out and statistical analysis has been performed. Three-parameter Weibull distribution and generalized Pareto distribution are widely used as the statistical analysis method in sloshing phenomenon, but generalized extreme value distribution and three-parameter log-logistic distribution are added in this study. Additionally, statistical distributions are fitted to peak pressure data using three different parameter estimation methods. The data were obtained from a three-dimensional sloshing model text conducted at Seoul National University. The loading conditions were 20%, 50%, and 95% of tank height, and the analysis was performed based on the measured impact pressure on four significant panels with large sloshing impacts. These fittings were compared by observing probability of exceedance diagrams and probability plot correlation coefficient test for goodness-of-fit.

Comparative Study on Rolling Characteristics of Hexagonal Bar with Special Alloy for Advancing Drawing System (인발성형 시스템 고도화를 위한 특수합금 육각봉의 압연특성 비교 해석 연구)

  • Lee, Young-Sik;Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.96-102
    • /
    • 2021
  • Hexagonal bolt, nut, fittings, and high-pressure valves with special alloy play an important role in many industrial products. Numerical analysis was conducted to obtain data for designing a new drawing system. This study aims to predict the rolling force of the new drawing system compared to that of the established drawing system. The rolling force of the new drawing system was predicted using numerical analysis by assuming that it is in proportion to deformation. The rolling forces of Mo, Ti, and W were approximately 1.4, 0.5, and 2.5 times those of SUS. Because the values of ultimate strength of special alloys were more close to numerical analysis, the values of ultimate strength could be used to predict the rolling force of the new drawing system without numerical analysis in field.

Research on stress distributions around welds of three-planar tubular Y-joints under out-of-plane bending moment

  • Shiliu Bao;Wenhua Wang;Jikai Zhou;Xin Li
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.181-196
    • /
    • 2023
  • Marine structures including offshore wind turbines (OWTs) always work under cyclic loads, which arouses much attention on the fatigue design. The tripod substructure is one of the typical foundation forms for fixed OWTs. The three-planar tubular Y-joint (3Y joint) is one of the important components in fatigue design as it is most likely to have cracks. With the existence of the multiplanar interaction effect, calculating the hot spot stress (HSS) of 3Y joints is complicated. To assist with fatigue design, the distributions of stress concentration factor (SCF) and multiplanar interaction factor (MIF) along weld toe curves induced by the out-of-plane bending moment are explored in this study. An FE analysis method was first developed and verified against experimental results. This method was applied to build a numerical database including 1920 FE models covering common ranges of geometric parameters. A parametric study has been carried out to reveal the distribution patterns of SCF and MIF. After multidimensional nonlinear fittings, SCF and MIF distribution formulas have been proposed. Accuracy and reliability checking prove that the proposed formulas are suitable for calculating the HSS of 3Y joints.