• Title/Summary/Keyword: Fittings

Search Result 180, Processing Time 0.021 seconds

Strength Analysis and Standardization for Closed Chocks by Using the Finite Elements Method (유한요소법을 이용한 클로즈드 초크의 구조검증 및 표준화에 대한 연구)

  • Jung, Jae-Wook;Lee, Byung-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.2
    • /
    • pp.132-145
    • /
    • 2012
  • Mooring fittings mean various devices and fittings to safely fasten vessels to quays, jetties and sea-floating buoys, etc. They include mooing winches, capstans, chocks, fairleads, guide rollers, bollards, and bitts. Not only the seats and reinforced parts for the installation of fittings but also ropes and chains for mooring and chain stoppers can be also considered. Because of damages to mooring fittings during mooring directly related to large-scale accidents such as the drifting of vessels, mooring fittings with strength appropriate for the physical features of the vessels must be installed. The reinforcement of the vessels on which the mooring fittings are installed must be designed to withstand the loads transferred from the fittings as well. Also mooring fittings with efficient strength should be required because damaged ships lead to sea pollution such as oil or fuel oil spillage. This study has been performed by the Finite Element Method for two aspects of closed chocks which are divided into structure-supporting shapes and working load. In the case of structure-supporting shapes, they have been performed in the field of sheet and bulwark. As for working load, it has been analyzed according to working load direction such as chock's side and below. At first, strength analysis for unique closed chocks has been carried out by using the Finite Element Method, they are applied for the situation when vessels pass by the panama canal. And then the experiment has been done to verify the analyzed date obtained by FEM. The experimental results were found to be similar to the numerical results with up to 16% difference. On the basis of the results obtained, standardization has been carried out by the Finite Element Method for various sizes of closed chocks.

Counting Process of MAP(3)s and Moment Fittings (3계 마코프 도착과정의 계수과정과 적률근사)

  • Kim, Sunkyo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.42 no.1
    • /
    • pp.19-28
    • /
    • 2017
  • Moments of stationary intervals and those of the counting process can be used for moment fittings of the point processes. As for the Markovian arrival processes, the moments of stationary intervals are given as a polynomial function of parameters whereas the moments of the counting process involve exponential terms. Therefore, moment fittings are more complicated with the counting process than with stationary intervals. However, in queueing network analysis, cross-correlation between point processes can be modeled more conveniently with counting processes than with stationary intervals. A Laplace-Stieltjies transform of the stationary intervals of MAP (3)s is recently proposed in minimal number of parameters. We extend the results and present the Laplace transform of the counting process of MAP (3)s. We also show how moments of the counting process such as index of dispersions for counts, IDC, and limiting IDC can be used for moment fittings. Examples of exact MAP (3) moment fittings are also presented on the basis of moments of stationary intervals and those of the counting process.

A Study on the Development and Strength Evaluation of the Mooring Fittings with Big Capacity (선박용 대형 계류장비의 개발과 강도 평가)

  • Kim, Young-sig;Kim, Ul-nyeon;Kim, Mi-hee;Kim, Kyoung-youn
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.1-7
    • /
    • 2017
  • It has been developed large mooring fittings having the capacity of 160 tons and 180 tons installed on 170K LNG FSRU. The finite element analysis for the mooring fittings was carried out in order to check the structural integrity and to confirm satisfaction of the rule requirements. The 3 kinds of mooring fittings such as chock, bollard and universal fairlead are selected for FE analysis and load test. According to the FE analysis results, all the stress levels satisfied the acceptance criteria guided by the IACS UR A2, ISO standard, ship rules and OCIMF. As test results under design load, no structural defects were found.

  • PDF

A Study on the Dynamic Loss Coefficients of Non-standard Fittings in Ship Exhaust Gas Pipes

  • Park, Seongjong;Park, Yonghwan;Kim, Bongjae;Choi, Jaewoong
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.479-485
    • /
    • 2019
  • As exhaust gas systems of ships become more complicated, it is necessary to calculate an accurate pressure loss at their design stage. If the dynamic loss coefficients of non-standard fittings mainly used in exhaust gas pipe (EGP) are well-documented, it would be possible to calculate precise pressure loss more readily than using the conventional method that analyzes the entire system. In the case of a ship's EGP, the flow rates and temperatures of exhaust gas are determined by engine specifications, and the range of the flow rate and temperature is limited according to operating conditions. In addition, as it is possible to define non-standard fittings frequently used in an EGP, a database can be easily constructed and effective. This paper illustrates effective parameters and analysis cases of several types of non-standard fittings mounted in ship EGPs. The analysis procedure proposed in this paper is verified using existing research results on HVAC fittings. The numerical procedure, which is minimally affected by manpower and grid, is established such that it can be applied at the industry level.

Evaluation of Structural Performance of Reinforced Concrete Beams Retrofitted by Embedded FRP Rod and Metal Fittings (매입형 FRP봉과 보강철물을 보강한 철근콘크리트 보의 구조성능 평가)

  • Ha, Gee-Joo;Shin, Jong-Hack;Ha, Young-Joo;Kang, Hyun-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.445-452
    • /
    • 2012
  • In this study, experimental research was carried out to evaluate the structural performance of the reinforced concrete beam using strengthening materials (embedded FRP rod, metal fittings) in existing reinforced concrete buildings. Seven reinforced concrete beams comprised of retrofitted embedded FRP rod (BCR series), embedded FRP rod with metal fittings (BCR-AC series), and standard specimen (BSS) were constructed and tested under monotonic loading. Design parameters of test specimens were amount of embedded FRP rod and metal fittings. The test results showed that the maximum load carrying capacity of specimens with embedded FRP rod (BCR series) and embedded FRP rod with metal fittings (BCR-AC series) increased by 21~55% and 21~63%, respectively, in comparison with the standard specimen BSS. BCR series test specimens failed by the adhesion slip and concrete cover separation. BCR-AC series test specimens failed by the adhesion slip due to the confining effect of metal fittings.

A study on the flow resistance in the various fittings for non-newtonian fluid (비뉴우튼유체의 관이음음 유동저항에 관한 연구)

  • ;;Kim, Chun Sik
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.4
    • /
    • pp.151-157
    • /
    • 1979
  • An experomental study on drg reduction in the rough tubes is presunted using the drrective drag reducing proymer solutions. The friction factors of the rough tubes follow the maximum drag reduction asymptote for the lower Reynolds numbers in the turbulent flow. However, as the Reynols number is increased the rougher tube results deviate from the maximum drag rduction asymptote sooner than the less rough tube results. There appears a systematic deviation from the maximum drag reduction asymptote depending on the relative roughness just as friction factors for the Newtonian hluid inthe rough tubes exhibit in the turbulent region. The minor loss results inthe various fittings such as elbows, tees, and gate valves are presunted The fittings show higher values of the loss coefficient in the drag reducing polymer solutions than in the Newtonian fluid, which is quite contrary to the drag reduction phenomenon in the straight tubes. The eqivalent length of the fittings for the drag reducing polymer solutions is many times longer than that for Newtonian fluids due to the increase of the loss coefficient and the decrease of the friction factor. It is speculated that the solid-like behavior of the polymer solutions in the abruptly changing folw passage plays a significant role in increasing the loss coefficient.

A Study on the Performance Evaluation of Fitting for Light-gauge Stainless Steel Pipe (경량 스테인리스 강관용 이음쇠의 성능평가에 관한 연구)

  • Nam, Jun-Seok;Park, Joo-Hwan;Min, Kyung-Tak;Kim, Yeob-Rae;Song, Chul-Gang
    • Fire Science and Engineering
    • /
    • v.24 no.6
    • /
    • pp.89-97
    • /
    • 2010
  • In recent fire protection system, the pipings should be light weighted, seismic proof and wrought with non-welding method. The light weighted stainless steel pipes and fittings, satisfying these requirements, are already used as a fire protection system in Germany, Netherland, Taiwan, Australia, United States and Japan. Accordingly, performance evaluation tests were carried out to determine whether or not the fittings can be used in the pipings. As the performance evaluation tests, we conducted vibration test, water hammering test, bending test and fire test. With the results of the tests, we concluded that the fittings can be used in the fire protection system, and that the life expectancy of the fittings exceeds that of buildings.

Stress Variation Characteristics of a High-Pressure Hose with Respect to Wire Braid Angle (강선의 편조각도에 따른 고압호스의 응력변화 특성)

  • Kim, H.J.;Koh, S.W.;Kim, B.T.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.71-78
    • /
    • 2005
  • A high-pressure hose includes rebar layers of the synthetic fiber such as nylon or a steel wire to control internal pressure. The hose assembly is manufactured through the swaging process to clamp the hose into the metal fittings. Usually, the hose behavior is affected by the resultant of the longitudinal and circumferential forces produced by the internal pressure. The rebar layers can appear the most ideal rebar effect when they are arranged to the same direction as the resultant force. The braid angle applied in the rebar layers is an important factor in determining ultimate burst pressure and overall hose life. Failure can occur on the contacted parts of a hose with the metal fittings under severe operating conditions such as high pressure and temperature of the inner fluid. In this paper, the mechanical behavior between the hose and the metal fittings during the swaging process and the stress variation characteristics of a high-pressure hose under a constant applied pressure are analyzed with respect to the braid angle of steel wire using the finite element method.

  • PDF

Exploring Variables Affecting the Clothing Pressure of Compression Garment -A Comparison of Actual Garments and Virtual Garments- (밀착의복 의복압에 영향을 미치는 변인 탐색 -실제착의와 가상착의 비교-)

  • Nam Yim Kim;Hyojeong Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.6
    • /
    • pp.1080-1095
    • /
    • 2023
  • Three-dimensional virtual fitting has become a trending practice in the fashion industry because of its productivity benefits, allowing garments to be virtually worn by avatar models without physical production. This study analyzed the variables influencing clothing pressure in both real and virtual fittings to expand the potential utility of pressure data derived from the latter. For this purpose, six sets of compression garments were created by combining two types of tricot fabrics and three types of reduced-pattern tops, with the clothing for real and virtual fittings having identical dimensions. Focus was directed to analyzing the correlation among clothing pressure, surface area deformation, and the mechanical properties of the fabrics. In real fittings, clothing pressure was influenced by multiple factors, including garment design, pattern reduction ratio, body shape, and fabric properties, consistent with existing knowledge. In virtual fittings, however, only the digital mechanical characteristics of the fabrics significantly influenced clothing pressure. The findings suggest that a more reliable implementation of clothing pressure in virtual fitting programs necessitates an approach that considers the complex structural information of garments.