• Title/Summary/Keyword: Fishing mortality

Search Result 69, Processing Time 0.03 seconds

Long Term Changes in Sea Surface Temperature Around Habitat Ground of Walleye Pollock (Gadus chalcogrammus) in the East Sea (동해 명태(Gadus chalcogrammus) 서식처 표층수온 장기 변동 특성)

  • Seol, Kangsu;Lee, Chung-Il;Jung, Hae-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.195-205
    • /
    • 2020
  • Oceanic conditions in walleye pollock habitat in the East Sea have shown decadal fluctuations between warm and cold periods in turn. Specifically, sea surface temperature (SST) has shown a dramatic increase between the late 1980s and the middle 2000s, and abrupt decreasing patterns after the late 2000s. Oceanic conditions in the Dong-han Bay (spawning ground) and middle eastern coastal waters (fishing ground), however, indicated different fluctuation trends in SST, increasing in the Dong-han Bay after the late 1980s, and decreasing after the late 2000s. These fluctuation patterns were especially clear in February and March. Sea surface temperature in the middle eastern coastal waters of Korea soared continuously after the late 1980s, but did not show a distinct decreasing pattern after the late 2000s compared with Dong han Bay, except for February SST values. These long term water temperature changes in both walleye pollock spawning and fishing ground are related to variation in walleye pollock landings. Especially, abrupt changes in spawning ground SST can be one of the factors influencing survival in the early ontogenesis of walleye pollock, including egg and yolk larval stages. During the 1980s, the area of suitable spawning temperature (2-5℃) was wider, and the length of Walleye pollock egg and larval stages greater compared with past and present oceanographic environments. However, such patterns did not correspond with the optimal spawning temperature range and greater length of development of walleye pollock during the late 1980s likely triggering a decline in pollock stock. In conclusion, it has been supposed that the dramatic decrease in walleye pollock landings in the East Sea since the late 1980s was caused by increasing water temperature leading to both early mortality and unsuitable spawning conditions.

Bioeconomic Management Policy for Fisheries Resources (생물경제학적 어업자원 관리정책에 관한 연구)

  • PYO, Hee-Dong;KWON, Suk-jae
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.16 no.1
    • /
    • pp.84-98
    • /
    • 2004
  • Due to a publicly owned resources, the overexploitation of the fisheries resources can result in externalities in the form of reduced future levels of yield. These problems can be theoretically improved through effective management of the fishery. The paper illustrates maximum sustainable yield(MSY), maximum economic yield(MEY) and F0.1 level of fishing mortality as the concept of optimal yield, and it theoretically shows that MSY is more appropriate for the optimal yield than MEY where prices increase even though MEY achieves the maximization of economic rent in a fishery assuming constant prices. And the paper presents several fisheries management tools and policies such as input controls, output controls and taxes. As the traditional approach to fishery management, input controls involve restrictions on the physical inputs into the production process(e.g. capital, time or technology) and output controls involve limits on the quantity of fish that can be landed. To introduce user cost into the harvest decisions of rent-seeking fishers, taxation, as a bioeconomic management policy of the fisheries, directly addresses the problems associated with the resource being unpriced. As most fisheries management plans, however, have increasing fisher income as an objective, taxes have not been introduced into any fisheries management policies despite their theoretical attraction.

Effects of Climate and Human Aquatic Activity on Early Life-history Traits in Fish (기후변화와 수상레저활동 인구변화가 어류의 초기생활사에 미치는 영향)

  • Lee, Who-Seung
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.395-408
    • /
    • 2013
  • Environmental condition can induce changes in early life-history traits in order to maximise the ecological fitness. Here I investigated how temperature change and variation in human aquatic activity/behaviour affect early life-history consequences in fish using a dynamic-state-dependent model. In this study, I developed a general fish's life-history model including three life-history states depend-ing on foraging activity, such as body mass, mass of reproductive tissue (i.e., gonadal development) and accumulated stress (i.e., cellular or physiological damage). I assumed the level of foraging activity maximises reproductive success-ultimately, fitness. The model predicts that growth rate, development of reproductive tissues and damage accumulation are greater in higher temperature whereas higher human aquatic activity rapidly reduced the growth rate and development of reproductive tissue and increased damage accumulation. While higher foraging activity in higher temperature is less affected by human aquatic activity, the foraging activity in lower temperature rapidly declined with human aquatic activity. Moreover, lower survival rate in higher temperature or human aquatic activity was independent on mortality rate due to human aquatic activity or mortality rate when foraging activity, respectively. However, the survival rate in lower temperature or human aquatic activity was dependent on these mortality rates. My findings suggest that including of early life-history traits in relation to climate-change and human aquatic activity on the analysis may improve conservation plan and health assessment in aquatic ecosystem.

A review of the mass-mortalities of sea-cage farm fishes (해상 가두리양식장 양식어류의 대량폐사에 대하여)

  • Han, Jido;Lee, Deok-Chan
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.1-25
    • /
    • 2022
  • The aquaculture industry has developed rapidly over the last three decades and is an important industry that supplies over 15% of humans' animal protein intake; therefore, there is a need to increase production to meet the continuous demand. The fish cage farms on the southern coast (Kyengsangnam-do and Jeollanam-do) of Korea are critical resources in aquaculture because they account for approximately 90% of the national total fish cage farms by water area ratio. However, the current aquaculture environment is being gradually affected by climate change, which is a global issue, and its effects are expected to intensify in the future. Therefore, it is urgently imperative to accurately evaluate the effects of climate change on South Korean aquaculture industries and to develop social and national strategies to minimize damage to the fishing industry. The damage to fish farmed in cage farms on the southern coast is increasing annually and the leading causes are high and low water temperature and red tides, which are directly or indirectly related to climate change. At present, global warming can provide opportunities for aquaculture industrialization of fish or other novel species, with economic implications. However, despite such opportunities, the influx of new species can also cause problems such as ecological disturbances, increase in the reproduction frequency of microalgae such as red tide, increase in disease incidence, and occurrence and periods of high water temperatures in summer. The scale of farmed fish mortality is increasing due to the complex effects of these factors. Increased damages due to fish mortality not only have severe economic impacts on the aquaculture industry, but the social costs of responding to the damage and follow-up measures also increase. various active responses can reduce the mortality damage in fish farms such as improving the management skills in aquaculture, improved species breeding, efficient food management, disease prevention, proactive responses, and system-wide improvements. This review article analyzes the large-scale mortality cases occurring in fish cage farms on the southern coast of Korea and proposes measures to mitigate mortality and enhance responses to such scenarios.

Management of small yellow croaker stock in Korean waters based on production value-per-recruit analysis (가입당 생산액 분석에 의한 한국 해역 참조기 Larimichthys polyactis 자원의 관리)

  • Zhang, Chang-Ik;Lee, Eun-Ji;Kang, Hee-Joong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.467-475
    • /
    • 2014
  • This study was performed to estimate optimum fishing mortality (F) and the age at first capture ($t_c$) for small yellow croaker in Korean waters. We first estimated optimum F and $t_c$ using traditional yield-per-recruit (YPR) analysis, and the results were 0.8/year and 2.5 years old, respectively. However, the individual fish price per unit weight of small yellow croaker in Korea increases dramatically by size. Thus, we developed an alternative method, which is called as production value-per-recruit (PPR) analysis. We developed two types of the PPR analysis, that is, the discrete function and the continuous function method. We estimated optimum F and $t_c$ using the two types of the PPR analysis and compared the results. The optimum F and $t_c$ from the discrete function method, were 0.3/year and 5.0 years old, respectively, while those from the continuous function method were 0.5/year and 3.5 years old, respectively. These PPR estimates were much more conservative for the stock management than the traditional YPR analysis, which can prevent the fish stock from the economic overfishing. As a result, the PPR analysis could be more proper approach for stock assessment in the case that the individual fish price per unit weight increases dramatically by size like small yellow croaker in Korea.

A Study on the Multi-gear and Multi-species Fisheries Assessment Models in Korean Waters I. Multi-species by a Single Gear (한국 근해 복수어구 및 다종어업 자원 평가모델 연구 I. 단일어구에 의한 다종자원의 이용)

  • SEO Young Il;ZHANG Chang Ik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.355-358
    • /
    • 2001
  • This paper presents case studies on the multi-species fisheries in Korean waters. Multi-species fisheries were divided into two types, that is, multi-species by a single fishery and single species by multiple fisheries. For the case of the multi-species by a single fishery, a multi-species yield-per-recruit model was applied to the Korean pair trawl fishery, which exploits demersal fishes such as, hairtail (Trichiurus lepturus), small yellow croaker (Pseudosciaena polyactis), white croaker (Argyrosomus argentatus) and pomfret (Pampus echinogaster). The overall fishing mortality ($F_x$) values for the multi-species was estimated and compared to the spawning potential ratio ($F_{x\%}$) val ues estimated from the spawning biomass-per-recruit model.

  • PDF

Construction of the Fishing Grounds Information Management System using GIS (GIS를 이용한 양식어장 정보관리 시스템 구축)

  • Park, Sung-Eun;Choi, Woo-Jeung;Lee, Won-Chan;Koo, Jun-Ho;Jung, Rae-Hong;Park, Jong-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.3
    • /
    • pp.90-98
    • /
    • 2004
  • This paper illustrates some practical geographic information system (GIS) applications for aiding fishery managers and coastal area planners in analysing the likely control scheme of coastal farming areas, and in providing a flexible framework for decision making on fishery development and zoning issues. The effective management of marine farming operation is vitally important since it can greatly influence economic availability by determining capital outlay and by affecting running costs, rates of productions and mortality factors. GIS has been widely adopted elsewhere as a potent management tool in both the private and public sectors. GIS is now being extensively adopted in marine-associated activities. Here, we have used GeoMania v2.5 GIS software and its 3D Analyst extension module to visualize marine farming areas data that were collected around the Jinhae bay.

  • PDF

Enhancing Red Tide Image Recognition using NMF and Image Revision (NMF와 이미지 보정을 이용한 적조 이미지 인식 향상)

  • Park, Sun;Lee, Seong-Ro
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.331-336
    • /
    • 2012
  • Red tide is a temporary natural phenomenon involving harmful algal blooms (HABs) in company with a changing sea color from normal to red or reddish brown, and which has a bad influence on coast environments and sea ecosystems. The HABs have inflicted massive mortality on fin fish and shellfish, damaging the economies of fisheries for almost every year from 1990 in South Korea. There have been many studies on red tide due to increasing damage from red tide on fishing and aquaculture industry. However, internal study of automatic red tide image classification is not enough. Especially, extraction of matching center features for recognizing algae image object is difficult because over 200 species of algae in the world have a different size and features. Previously studies used a few type of red tide algae for image classification. In this paper, we proposed the red tide image recognition method using NMF and revison of rotation angle for enhancing of recognition of red tide algae image.

Stock Assessment of the Southern Bluefin Tuna Thunnus maccoyii Using the MULTIFAN-CL Model (MULTIFAN-CL 모델을 이용한 남방참다랑어 Thunnus maccoyii의 자원 평가)

  • Kwon, You-Jung;Moon, Dae-Yeon;Zhang, Chang-Ik;Koh, Jeong-Rack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.367-373
    • /
    • 2007
  • We assessed the stock of the southern bluefin tuna (SBT, Thunnus maccoyii) by applying the MULTIFAN-CL model. The model is spatially disaggregated, with the population and fisheries stratified into a number of regions within the overall stock range. Catch, effort, length-frequency, and tagging data from 1965 to 2003 were stratified by three regions and four quarters (Jan-Mar, Apr-Jun, Jul-Sept and Oct-Dec). These data were used to estimate the instantaneous fishing mortality (F), biomass, spawning biomass, recruitment, and so on. The Commission for the Conservation of Southern Bluefin Tuna (CCSBT) used only Japanese data and did not consider migration for the SBT stock assessment. By contrast, we used Japanese, Australian, New Zealand, Taiwanese, and Korean data, and considered migration. As a result, the estimated annual average F of all age classes was 0.073/yr and the F of age class 6-10 was the highest. The results also showed that the biomass and recruitment of SBT had declined significantly after 1965. Compared with the CCSBT results, the estimated spawning biomass in this study was lower and more uncertain. However, we will conduct a sensitivity analysis to get more accurate biological parameters and results. In addition, we need to use the bootstrap resampling method to quantify the uncertainty.

Estimation of the Exploitable Carrying Capacity in the Korean Water of the East China Sea (한국 남해의 어획대상 환경수용량 추정 연구)

  • ZHANG, Chang-Ik;SEO, Young-Il;KANG, Hee-Joong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.513-525
    • /
    • 2017
  • In the estimation of the exploitable carrying capacity (ECC) in the Korean water of the East China Sea, two approaches, which are the ecosystem modeling method (EMM) and the holistic production method (HPM), were applied. The EMM is accomplished by Ecopath with Ecosim model using a number of ecological data and fishery catch for each species group, which was categorized by a self-organizing mapping (SOM) based on eight biological characteristics of species. In this method, the converged value during the Ecosim simulation by setting the instantaneous rate of fishing mortality (F) as zero was estimated as the ECC of each group. The HPM is to use surplus production models for estimateing ECC. The ECC estimates were 4.6 and 5.1 million mt (mmt) from EMM and HPM, respectiverly. The estimate from the EMM has a considerable uncertainty due to the lack of confidence in input ecological parameters, especially production/biomass ratio (P/B) and consumption/biomass ratio (Q/B). However, ECC from the HPM was estimated on the basis of relatively fewer assumptions and long time-series fishery data as input, so the estimate from the HPM is regarded as more reasonable estimate of ECC, although the ECC estimate could be considerd as a preliminary one. The quality of input data should be improved for the future study of the ECC to obtain more reliable estimate.