• Title/Summary/Keyword: Fishing boat design

Search Result 59, Processing Time 0.025 seconds

Developing a Simulator of the Capture Process in Towed Fishing Gears by Chaotic Fish Behavior Model and Parallel Computing

  • Kim Yong-Hae;Ha Seok-Wun;Jun Yong-Kee
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 2004
  • A fishing simulator for towed fishing gear was investigated in order to mimic the fish behavior in capture process and investigate fishing selectivity. A fish behavior model using a psycho-hydraulic wheel activated by stimuli is established to introduce Lorenz chaos equations and a neural network system and to generate the components of realistic fish capture processes. The fish positions within the specified gear geometry are calculated from normalized intensities of the stimuli of the fishing gear components or neighboring fish and then these are related to the sensitivities and the abilities of the fish. This study is applied to four different towed gears i.e. a bottom trawl, a midwater trawl, a two-boat seine, and an anchovy boat seine and for 17 fish species as mainly caught. The Alpha cluster computer system and Fortran MPI (Message-Passing Interface) parallel programming were used for rapid calculation and mass data processing in this chaotic behavior model. The results of the simulation can be represented as animation of fish movements in relation to fishing gear using Open-GL and C graphic programming and catch data as well as selectivity analysis. The results of this simulator mimicked closely the field studies of the same gears and can therefore be used in further study of fishing gear design, predicting selectivity and indoor training systems.

Evaluating the Application Feasibility of Lithium-Battery Electric Propulsion for Fishing Boats

  • Haiyang Zhang;Jaewon Jang;Maydison;Daekyun Oh;Zhiqiang Han
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.175-185
    • /
    • 2023
  • Many small vessels such as fishing boats operate in the world's oceans; accordingly, interest in these small vessels' exhaust-gas problem is increasing. Research on the application of electric-propulsion technology has been steadily conducted; however, the subject is limited to research ships or leisure boats, while research on application efficiency remains insufficient. This study attempts to apply lithium-battery electric-propulsion technology to small ships. A gross tonnage of 9.77, a representative fishing boat, is to be redesigned as a fully electrified ship. Without changing the main cabin's dimensions and fuel tanks, the ship's propulsion system is redesigned based on a lithium-battery electric-propulsion system. In addition, the redesigned system is compared with the original sample ship's diesel-propulsion system for application-effect analysis. The results indicate that under controlled sailing conditions, the weight and volume of the electric-propulsion system are 9.5 and 10.5 times those of the diesel-propulsion system, respectively. These values indicate that the system cannot meet fishing boats' high endurance requirements. Therefore, under the existing technical conditions, applying the full lithium-battery electric-propulsion system to solve the problem of high emissions from fishing boats shows limited feasibility.

Structural Strength Assessment and Optimization for 20 Feet Class Power Boat (20피트급 파워보트의 구조강도 평가 및 최적화)

  • Yum, Jae-Seon;Yoo, Jaehoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.108-114
    • /
    • 2016
  • Recently, there has been a growing interest in marine leisure sports and high speed power boat for fishing. The prototype of 20 feet class power boat was developed and authors are joined in this government-led project. The research was performed to evaluate the optimal structure and design of the structural strength necessary to ensure the structural safety of the power boat. A new material ROCICORE fiber added to the mat and roving was adopted for high-power tenacity. ANSYS Workbench has been used to make the structural model, evaluate the strength and optimize the structural design. The response of the structure to quasi-static slamming loads according to the rules and regulations of ISO 12215-5, Lloyd’s Register of Shipping and Korean Register has been implemented and studied. An optimization study for the structural response is carried out by changing the plate thickness and section modulus of stiffeners. The power boat structure derived fuel efficiency is optimized by performing the best possible structural design to minimize the hull weight.

A Study on the Practical Cathodic Protection Design for the FRP Fishing Boat and It’s Application Scheme (FRP 어선 2종 스테인리스강 축의 음극방식을 위한 실용설계 및 적용방안 연구)

  • Gang, Dae-Seon;Kim, Gi-Jun;Lee, Myeong-Hun;Park, Jeong-Dae;Kim, Tae-Eon
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.21
    • /
    • pp.66-77
    • /
    • 2006
  • Stainless steel has been stably used closed by passivity oxidation films(Cr₂O₃) is made by neutral atmospheric environment. However, passivity oxidaton films of the surface of stainless steel occasionally comes to be destroyed in seawater which is influenced by an environment having galogen ion like Cl‾, then, localization corrosion comes to occur Stainless steel 304 for shaft system material of the small-size FRP fishing boat on seawater environments made an experiment on simulation of sacrifical anode(Al, Zn). Through these experiment and study, following results have been obtained ; According to the field inspection and corrosion simulation, the corrosion on the 2nd class stainless steel shaft(STS304) in FRP fishing boat has been verified to occur by crevice corrosion and galvanic corrosion etc., According to the comparison and analysis of Stainless steel 304 was severely corroded, but, protected shaft specimen was not totallay corroded. This result is assumed to be made by the facts that anodic reaction, Fe → fe²++ 2e¯, has been restricted by the cathodic protection current of sacrificial anode material.

  • PDF

Study of Hull Form Development and Resistance Performance of Catamaran-type High Speed Fishing Leisure Boat (고속 쌍동형 낚시 레저보트 선형개발과 저항성능에 관한 연구)

  • Jeong, Uh-Cheul;Kwon, Soo-Yeon;Choi, Ji-Hoon;Kim, Do-Jung;Hong, Ki-Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.1-6
    • /
    • 2013
  • A 25ft class fishing leisure boat is developed, and the resistance performances are investigated by a model test in a high-speed circulating water channel. The design speed of the developed ship is 25 knots using a 150 ps outboard engine. A catamanan type hull form using a planing section is adopted considering the Froude number and large deck area. The effect of a center body attached on the bottom of the cross deck is studied under various conditions. Wave patterns are observed to make clear the relationship between the resistance performance and the wave characteristics. The results show that the shape of the center body and the position of the chine line can have a strong effect on the resistance performance in a certain velocity range.

A Study on the Resistance Performance of Korean High-Speed Small Coastal Fishing Boat (한국 고속 소형 연안어선의 저항성능 연구)

  • Yu, Jin-Won;Lee, Young-Gill;Park, Ae-Seon;Ha, Yoon-Jin;Park, Cheong-Kyu;Choi, Young-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.158-164
    • /
    • 2011
  • The study on the improvement of resistance performance is very important for coastal fishing boats in Korea, because the prices of fuel oil are gradually risen and the demand of high-speed fishing boats is increased lately. This study is concerned with the improvement of the resistance performance for Korean high-speed small coastal fishing boats. A semi-planing hull form of Korean small coastal fishing boat is selected in the role of initial hull. From the modification of the hull form parameters and the local characteristics of the hull form, the improvement of the resistance performance is achieved. The resistance performances of the initial and the modified hull forms are estimated by using a numerical simulation method. Also, ship model tests are carried out in ship model basin.

A Fundamental Study on the Vertical-Axis Wind Turbine for Fishing Boat using Numerical Analysis (수치해석을 이용한 어선용 수직축 풍력터빈의 기초연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Ha, Yoon-Jin;Kang, Bong Han;Kang, Dae-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.365-372
    • /
    • 2013
  • In this study, the flow characteristics and structural safety of a 500W class vertical-axis wind turbines(VAWT) for a fishing boat are investigated by numerical simulations. Guide vanes to increase the performance of the VAWT are investigated. And the best guide vane in the numerical simulations is applied to the VAWT. Also, modal analyses are performed to find out the natural frequencies of the VAWT, and the resonance safety of the VAWT is evaluated. The structural analysis of the VAWT is carried out by one-way FSI(Fluid Structure Interaction). And the results are used for the evaluation of structural safety according to IEC 61400-1 code. Finally, the possibility of the installation of the VAWT on the wheelhouse of a 9.77ton class fishing boat is checked. The results of the present research could be used as one of the fundamental data to design a VAWT for a fishing boat.

A study on estimating the main dimensions of a small fishing boat using deep learning (딥러닝을 이용한 연안 소형 어선 주요 치수 추정 연구)

  • JANG, Min Sung;KIM, Dong-Joon;ZHAO, Yang
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.272-280
    • /
    • 2022
  • The first step is to determine the principal dimensions of the design ship, such as length between perpendiculars, beam, draft and depth when accomplishing the design of a new vessel. To make this process easier, a database with a large amount of existing ship data and a regression analysis technique are needed. Recently, deep learning, a branch of artificial intelligence (AI) has been used in regression analysis. In this paper, deep learning neural networks are used for regression analysis to find the regression function between the input and output data. To find the neural network structure with the highest accuracy, the errors of neural network structures with varying the number of the layers and the nodes are compared. In this paper, Python TensorFlow Keras API and MATLAB Deep Learning Toolbox are used to build deep learning neural networks. Constructed DNN (deep neural networks) makes helpful in determining the principal dimension of the ship and saves much time in the ship design process.

Study on Operating Performance Estimation Process of Electric Propulsion Systems for 2.5 Displacement Ton Class Catamaran Fishing Boat (쌍동형 배수량 2.5톤 급 어선의 전기 추진 시스템 운항성능 추정 프로세스 연구)

  • Jeong, Yong-Kuk;Lee, Dong-Kun;Jeong, Uh-Cheul;Ryu, Cheol-Ho;Oh, Dae-Kyun;Shin, Jong-Gye
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.1-9
    • /
    • 2013
  • Because the environmental regulations for ships are getting tighter, green ships employing eco-friendly technology have recently received a large amount of attention. Among them, various studies for electric propulsion ships have been carried out, particularly in the United States, European Union, and Japan. On the other hand, research related to electric propulsion ships in Korea is in a very nascent stage. In this paper, an estimation process based on the rough requirements of ship-owners for the operating performance of electric propulsion ships is proposed. In addition, the estimation process is applied to a small fishing boat for verification of the process. These results are expected to be used as design guidelines in the early stage of the design process for electric propulsion ships.

Analysis of the Design of Rudder Area Ratio for Domestic Fishing Vessel (국내어선 타면적비 설계현황 분석연구)

  • KIM, Min-Ryong;Woo, Donghan;IM, Nam-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.235-243
    • /
    • 2022
  • A total of 97,623 ships were registered in Korea in 2019. Among these, 65,835 vessels, accounting for approximately 67 % of the total number of ships, were registered as fishing vessels. As with the proportion of fishing vessels, the frequency of marine accidents is also high. In 2020, 2,331 of 3,535 accidents occurred on fishing vessels. Hence, various institutional arrangements are required for improving the safety of domestic fishing vessels. In this study, we examined domestic and international regulations on domestic and foreign control performance related to fishing boats for improving the safety of fishing boats. Additionally, the ratio of the rudder area of 153 fishing boats operating in Korea was investigated to examine the current status of the rudder area design of fishing boats whose design standards have not been clearly established compared to fishing boats. Resultantly, we statistically confirmed that most fishing boats were designing rudder areas because they did not meet international standards. In the future, these analysis results can be used as basic data to prepare rudder area design standards for improving the maneuvering performance of domestic fishing boats.