• Title/Summary/Keyword: Fishery Patrol Ship

Search Result 4, Processing Time 0.018 seconds

An Experimental Study on Hull Form Development and Anti-Rolling Tank Performance of G/T 360ton Class Fishery Patrol Ship (총톤수 360톤급 어업지도선의 선형개선 및 횡요감소장치 성능에 관한 실험적 연구)

  • Lee, Kwi-Joo;Joa, Soon-Won;Kim, Kyoung-Hwa
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.245-250
    • /
    • 2003
  • Hull form development and Anti-rolling tank of G/T 360ton class fishery patrol ship was carried out in the CWC at Chosun university, cooperatively with WJFEL(The West Japan Fluid Engineering Laboratory). Same size of 15 knots class fishery patrol ship was selected as a parent form(Model number: CU-015), and modified fore and after body hull form under the slightly lengthened to be suitable for the operation at 20 knots. This paper investigated for a rolling performance and an effective using method when fishery patrol ship was equipped with anti-rolling tank. On several occasions of rolling test was made reference to design data of a similar ship. Although the hull form was highly constrained in being limited to modification of a parent hull form, significant wave resistance improvement was made.

  • PDF

A study on the hull form development of the G/T 340ton class high speed fishery patrol ship (G/T 340톤급 고속 어업지도선의 선형개발에 관한 연구)

  • 이귀주;이광일
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.221-226
    • /
    • 1997
  • This study was carried out for the hull form development of G/T 340ton class high speed fishery patrol ship by Chosun University at the Circulating Water Channel cooperatively with Korea Maritime Service. Same size of 15knots class fishery patrol ship was selected as a parent form (Model number : CU-015), and modified fore and after body to be suitable for the operation at 20 knots. To minimize the breaking wave in the vicinity of fore body at high speed zone, high bulb nose and slender fore body hull form was chosen as an initial condition. Meanwhile, to ensure the engine room space keeping high resistance-propulsion performance, U-type stern hull form was developed.

  • PDF

Hull Form Development of the Medium Size High Speed Fishery Patrol Ship (중형 고속어업지도선의 선형개발에 관한 연구)

  • Kwi-Joo Lee;Kwang-Il Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.1-7
    • /
    • 1998
  • Hull form development of the medium size high speed fishery patrol ship was carried out in the CWC at Chosun university. Same size of 15 knots class fishery patrol ship was selected as a parent form(Model number : CU-015), and modified fore and after body hull form under the slightly lengthened lo be suitable for the operation at 20 knots. To minimize the breaking wave in the vicinity of fore body at high speed zone, high bulb and sharp entrance angle were adapted. Meanwhile, to enlarge the engine room space keeping high resistance and sea-keeping Performance, U-type stern hull form was developed. Although the hull form was highly constrained in being limited to modification of a parent hull form significant wave resistance improvement was made.

  • PDF

Development of Ship Identification and Display System using Unmaned Aerial Vehicle System (무인항공기 시스템을 활용한 선박 식별 및 도시 시스템 개발)

  • Choy, Seong-min;Ko, Yun-ho;Kang, Youngshin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.10
    • /
    • pp.862-870
    • /
    • 2016
  • AIS and V-PASS, which are used for safe navigation and automatic vessel arrival and departure, are mandatory standard equipment installed on all ships. If an aircraft is equipped with a ship identification system using AIS and V-PASS, and then ship identification information is received by a vessel such as a large fishery inspection boat or a patrol ship or a ground control system, we can quickly perform maritime surveillance and disaster response. This paper describes the development of a ship identification and display system using a ship identification device for aircraft. Flight test results and a future application plan are also included.