• 제목/요약/키워드: First order system

검색결과 5,340건 처리시간 0.037초

황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서 (Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas)

  • 유인창;김부용;곽원준;김기현;박세진
    • 한국석유지질학회지
    • /
    • 제8권1_2
    • /
    • pp.1-43
    • /
    • 2000
  • 황해 및 인접 지역에 위치하는 퇴적 분지들의 구조적 진화에 따른 층서를 이해하기 위한 비교 연구가 통합층서기술을 이용하여 수행되었다. 본 연구의 잠정적 결과로 우리는 각 분지별 퇴적층들의 시$\cdot$공간상의 대비가 가능한 층서틀을 제안한다. 본 연구의 결과로 제안된 층서틀은 향후 황해 및 인접 지역의 석유자원 탐사를 위한 새로운 층서적 사고의 틀로 사용될 수 있을 것이다. 생층서 자료와 결합시켜 수행한 통합층서해석 결과, 캠브로-오오도비스기, 석탄기-트라이아스기, 쥬라기 초기-중기, 쥬라기 말기-백악기 초기, 백악기 후기, 팔레오세-에오세, 올리고세, 마이오세 초기, 마이오세 중기-플라이오세 퇴적층 등 9개의 단위층들이 인지된다. 본 연구를 통해 인지된 9개 단위층들은 구조층서단위로 황해 및 인접 지역 퇴적 분지들의 퇴적 작용 및 분지 형성과 변형에 관련된 구조운동 등에 관한 정보를 제공해 준다 남황해 분지는 고생대 동안 남중국 지괴의 북쪽 연변부에 발달하는 대륙 연변부 분지로 시작되었다 쇄설성 및 탄산염 퇴적물들이 상대적 해수면의 변동에 따라 윤회성을 보이면서 분지 내에 퇴적되었다. 그러나, 데본기 동안의 칼레도니안 조산운동에 의해 분지는 융기되어 침식을 받았으며, 결과로 캠브로-오오도비스기 단위층과 석탄기-트라이아스기 단위층 사이에 부정합이 형성되었다. 북중국 지괴와 남중국 지괴가 충돌될 때인 페름기 말기로부터 트라이아스기 말기 사이에 인도시니안 조산운동이 일어났다. 북중국 지괴와 남중국 지괴의 충돌에 따라 친링-다비-수루-임진강 습곡대가 형성되었으며, 고생대 퇴적층들은 융기된 후 변형을 받게 되었다. 이 후 습곡대에 평행한 대륙전사면이 빠르게 침강하면서 발해 분지 및 서한만 분지와 같은 대륙전사면 분지가 형성되어 쥬라기 초기-중기의 후조산성 퇴적물들이 분지를 충진시켰으며, 지역적으로 피기백 형태의 소규모 분지들이 저각의 역단층을 따라 발달하게 되었다. 이들 대륙전사면 분지나 피기백 형태의 분지들은 쥬라기 말기 동안에 일어나는 앤샤니안 조산운동 (일차)에 의해 변형된다. 그러나, 남황해 분지는 쥬라기 초기 및 중기 동안에 대륙내 침강 분지였던 것으로 보인다. 남황해 분지의 쥬라기 초기 및 중기 단위층은 분급도와 원마도가 양호한 규암역을 포함하는 두꺼운 기저 역암층과 함께 하성 및 호성 환경 하에서 퇴적된 사암 및 셰일들로 구성되어 있다. 한편, 탄루 단층대는 트라이아스기 말기로부터 좌수향의 운동을 시작하였으며, 쥬라기와 백악기를 거쳐 제삼기 초까지 계속되었다. 쥬라기 말기에 들어와 탄루 탄층대를 따라 이차 및 삼차 순위의 주향이동 단층들이 발달되면서 소규모 열개 분지들이 형성되기 시작하였다. 에오세말까지 지속된 탄루 단층의 이동에 의해 남황해 분지는 대규모의 횡압력을 받게되어 소규모 열개 분지들은 인리형 분지로 확장되었다. 그러나 쥬라기 말기와 에오세 말기까지 발해 분지는 융기되어 심한 변형을 받게되었다. 발해 분지의 백악기 초기 이후 에오세 말기까지의 부정합이 앤샤니안 조산운동 (이차 및 삼차)에 의해 형성된 것으로 해석된다. 한편 에오세 말에 이르러 인도판과 유라시아판의 충돌에 의한 히말라얀 조산운동의 영향으로 탄루 단층의 이동방향이 좌수향에서 우수향으로 변환되기 시작하면서 남황해 분지는 구조역전의 현상이 일어났으며, 동시에 발해 분지는 인리형 분지로 발달하게 되었다. 따라서, 올리고세 동안 발해 분지에서는 퇴적작용이, 남황해 분지에서는 심한 구조역전에 의한 분지변형이 동시에 일어났다 올리고세 이후 현재까지, 남황해 분지와 발해 분지들은 간헐적인 해침과 함께 광역적 침강을 유지하면서 안정된 대륙 및 대륙붕 지역으로 전이되었다.

  • PDF

온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인에 대한 연구 (An Empirical Study on Influencing Factors of Switching Intention from Online Shopping to Webrooming)

  • 최현승;양성병
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.19-41
    • /
    • 2016
  • 정보통신기술의 발전과 모바일 기기 사용의 생활화로 인해 최근 많은 소비자들이 멀티채널 쇼핑(multi-channel shopping)이라는 새로운 쇼핑 행태를 보이고 있다. 온라인 쇼핑이 등장한 이후, 온라인 매장에서 상품을 구매하기 전 오프라인 매장에서 상품을 먼저 확인하는 쇼루밍(showrooming) 형태의 멀티채널 쇼핑이 한 때 대세를 이루었으나, 최근에는 스마트폰, 태블릿 PC, 스마트워치 등 스마트 기기 사용의 폭발적 증가와 옴니채널(omni-channel) 전략으로 대표되는 오프라인 채널의 대대적 반격으로 인해 오프라인 매장에서 상품을 구매하기 전 온라인(혹은 모바일)으로 정보를 먼저 확인하는 웹루밍(webrooming) 현상이 도드라지게 나타나 온라인 소매업자를 위협하고 있다. 이러한 상황에서 소비자의 온라인 쇼핑에서 웹루밍으로의 쇼핑전환 의도에 영향을 미치는 요인을 분석하는 것이 의미가 있음에도 불구하고, 기존 대부분의 선행연구는 싱글채널(single-channel) 혹은 멀티채널 쇼핑 자체에만 초점을 맞추고 있다. 이에, 본 연구에서는 밀고-당기기-이주이론(push-pull-mooring theory)을 바탕으로 소비자의 온라인 채널 쇼핑이 웹루밍 형태의 쇼핑으로 전환되는 과정을 상품정보 탐색과 구매행위로 각각 구분하여 그 영향을 실증하였다. 연구모형을 검증하기 위하여, 웹루밍 경험이 있는 수도권 소재 대학생을 대상으로 280개의 설문 표본을 수집하였다. 본 연구의 결과는 현업 마케팅 종사자에게 멀티채널 소비자들을 관리하는 데 있어 실무적인 시사점을 제공함과 동시에, 향후 다양한 형태의 멀티채널 쇼핑전환 연구로의 확장에 기여할 수 있을 것으로 기대한다.

가상현실 웨어러블 기기의 구매 촉진을 위한 태도 자신감과 사용자 저항 태도: 가상현실 헤드기어를 중심으로 (Attitude Confidence and User Resistance for Purchasing Wearable Devices on Virtual Reality: Based on Virtual Reality Headgears)

  • 손봉진;박다슬;최재원
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.165-183
    • /
    • 2016
  • 스마트폰을 넘어 차세대 IT 비즈니스의 주목할 만한 후보군으로 가상현실이 이슈가 되고 있다. 가상현실은 컴퓨터와 VR헤드셋을 통해 구현한 입체적인 가상공간을 제공함으로써 사용자의 시각을 완전히 장악하고, 청각, 촉각 등 오감과의 상호작용 및 음성, 동작인식 등을 통해 가상공간을 마치 현실처럼 느끼게 한다는 점에서 향후 주목할 만한 산업 분야로 떠오르고 있다. 많은 글로벌 대기업들이 가상현실과 관련한 사업에 투자를 하고 있으나 소비자의 관점에서 가상현실 관련 제품군은 아직 쉽게 접하거나 구매하기 어려운 제품군으로 인식된다. 그렇기 때문에 소비자의 태도 변화가 큰 변화가 발생되고 있지 않으며 Acception & Diffusion 모델의 초기단계에 지나지 않아 구매로 연결되지 않는 실정이다. 본 연구는 기존 선행연구의 관점을 바탕으로 가상현실 헤드기어 제품들의 판매 촉진을 위한 사용자 관점에서의 사용자 저항을 매개 변수로 저항을 감소시키고 사용 및 구매의도에 영향을 주는 선행요인들을 도출하고자 하였으며 사용자가 가지고 있는 태도에 대한 자신감에 영향을 주어 행동 의도까지 변화시키는 현상에 대한 분석을 하고자 하였다. 본 연구의 결과는 태도 자신감에 대한 사용 용이성과 사용 혁신성의 영향력을 확인할 수 있었다. 마찬가지로 사용자 혁신저항에 영향력을 주는 변수로는 가격, 심미적 외관, 즐거움, 콘텐츠 및 화질 관련 변수들을 도출하였다. 결과적으로 본 연구는 태도 자신감의 가상현실 혁신 수용에 대한 영향력을 제시하고 가격 이외 변수인 콘텐츠의 양과 저항감의 관계성을 바탕으로 관련 변수들을 제시하였다. 특히 초기 시장인 가상현실 제품의 특성에 따라 브랜드에 대한 선점효과의 필요성과 콘텐츠의 부족함 등이 실무적으로 해결해야 할 과제로서 확인되었다.

데이터마이닝 기법을 활용한 비외감기업의 부실화 유형 분석 (The Pattern Analysis of Financial Distress for Non-audited Firms using Data Mining)

  • 이수현;박정민;이형용
    • 지능정보연구
    • /
    • 제21권4호
    • /
    • pp.111-131
    • /
    • 2015
  • 본 연구에서는 데이터마이닝 기법의 일종인 자기조직화지도(Self-Organizing Map, SOM)를 이용하여 비외감기업의 부실화 유형을 구분하고자 한다. 자기조직화지도는 인공 신경망을 기초로 자율학습을 통해 입력된 값을 유사한 군집끼리 묶어내는 방법으로, 기존의 통계적 군집 분류 방법보다 성능이 뛰어나고, 고차원의 입력데이터를 저차원으로 시각화할 수 있다는 장점 때문에 다양한 분야에서 각광받고 있다. 본 연구에서는 기존 연구의 주요 분석대상이었던 외감기업에 비해 부실화 빈도는 높지만 데이터 수집의 어려움으로 인해 분석대상에서 다소 제외되었던 비외감기업의 부실화 유형에 대해 알아보고, 유형별 구체적인 사례도 소개하고자 한다. 재무자료수집이 가능한 100개의 비외감 부실기업에 대해 분석한 결과, 비외감기업의 부실화 유형은 다섯 가지로 구분되었다. 유형 1은 전체 집단의 약 12%를 차지하며, 수익성, 성장성 등 재무지표가 다른 유형에 비해 열등하였다. 유형 2는 전체 집단의 약 14%로, 유형 1보다는 덜 심각하지만 재무지표가 대체로 열등하였다. 유형 3은 성장성 지표가 열등한 그룹으로 기업간 경쟁이 극심한 가운데 지속적으로 성장하지 못하고 부실화된 경우로 약 30%의 기업이 포함되었다. 유형 4는 성장성은 탁월하나 부채경영 등 과감한 경영으로 인해 유동성 부족이나 현금부족 등의 이유로 부실화된 그룹으로 약 25%의 기업이 포함되었다. 유형 5는 거의 모든 재무지표가 우수한 건전기업으로, 단기적인 경영전략의 실수 또는 중소기업의 특성상 경영자의 개인적 사정으로 부실화 되었을 가능성이 큰 그룹으로 약 18%의 기업이 포함되었다. 본 연구 결과는 부실화 유형을 구분하는데 기존의 통계적 방법이 아닌 자기조직화지도를 이용하였다는 점에서 학문적 의의가 있고, 비외감기업의 재무지표만으로도 1차적인 부실화 징후를 발견할 수 있다는 점에서 실무적 의의가 있다고 할 수 있다.

거대고리 운반체에 의한 중금속이온의 에멀죤 액체막 수송 (Emulsion Liquid Membrane Transport of Heavy Metal Sons by Macrocyclic Carriers)

  • 정오진
    • 한국환경과학회지
    • /
    • 제4권2호
    • /
    • pp.223-232
    • /
    • 1995
  • 액체막의 운반체로 사용할 새로운 2개의 거대고리화합물을 합성하였다. 이들 결과들은 이 시스템을 구성하는데 있어서 이론의 응용성을 증명하여 준다. source phase의 공존이온으로서 $SCN^-$,$I^-$$Cl^-$이온을 그리고 receicing phases에서 $S_2O_3^{2-}$$P_2O_7^{4-}$을 이용한 액세막계로서부터 중금속 이온들에 대한 선택적 수송효율을 검토하였다. source phase의 M(II)이 $Cd(SCN)_2$$(P[SCN^-]= 0.40M)$, $Hg(SCN)_2([SCN^-]=0.40M)$, Pd(CN)$([CN^-]= 0.40M)$일때 M(II)의 수송율은 최대값을 나타낸다. 각가의 경쟁 양이온에 대한 Cd(II)이나 Pd(II)은 source phase가 00.3M-$S_2O_3^{2-}$이나 0.3M-$P_2O_7^{4-}$ 일때 가장 잘 분리된다.이 연구의 결과에서, 이 액체막계에서 효과적인 거대고리-매질수송을 하기 위해서는 두개의 규칙이 반드시 필요하다. 첫째, tiluence중으로 $M^{n+}$이온이 효과적으로 추출되고, 즉 만일 $M^{n+}$ 거대고리화합물 상호작용에 대한 logK값과 $M^{n+}$-거대고리화합물($L_1$이나 $L_2$)의 상호작용에 대한 logK값의 비가 충분히 크다면 receiving phase와 toluene의 접촉면으로부터 쉽게 중금속이온($Cd^{2+}$,$Pb^{2+}$$Hg^{2+}$)들이 떨어져 나온다. $L_1$(3,5-benzo-10,13,18,21-tetraoxa-1,7-diazabicyclo(8,5,5)eicosnan)은 $Cd^{2+}$$Pb^{2+}$ 이온과 안정한 착물을 형성한다. 그리고 $L_1$은 수용액중에서 용해하기가 매우 어렵다. 그리고 $Cd^{2+}$$L_1$$Pb^{2+}$$L_1$착물은 $Cd^{2+}-{(S_2O_3)}_2^{2-}$$Pd^{2+}-P_2O_7^{4-}$착물보다 비교적 불안정하다. 다른 한편으로 $Hg^{2+}-L_1$착물의 안정도는 $Hg^2-{2+}-(S_2O_3)_2^{2-}$이나 $Pb^{2+}-P0_2O_7^{4-}$의 그것보다 그리고 $L_2$(5,8,15,18,23,26-hexaoxa-1,12-diazabicyclo(10,8,8)octacosan)의 tuluene에 대한 분배계수는 $L_1$의 그것보다 훨씬 작다. 따라서 $Hg^{2+}$-$L_1$이나 $M^{n+}$이나 $M^{n+}-L-2(M^{2+}=Cd^{2+}, Pb^{2+}$이나 $Hg^{2+})$의 안정도수상수가 매우 큼에도 불구하고 이들 양이온의 수송량은 매우 적다.

  • PDF

데이터마이닝을 활용한 소프트웨어 개발인력의 업무 지속수행의도 결정요인 분석 (A Study of Factors Associated with Software Developers Job Turnover)

  • 전인호;박선웅;박윤주
    • 지능정보연구
    • /
    • 제21권2호
    • /
    • pp.191-204
    • /
    • 2015
  • 국내 소프트웨어(SW) 개발인력의 미충원율은 매우 높으며, 특히 2년 이상의 현장경력이 있는 고급 개발자의 부족문제는 심각하다. 최근 정부도 이를 인식하고, 정책적으로 SW개발 신규인력 양성에 힘을 기울이고 있다. 그러나, 이러한 노력은 초급개발자의 수급문제를 해결하는데 효과적일 수 있지만, 업계에서 요구하는 고급 개발자의 부족현상을 해결하는 근본적인 대책으로 인식되지는 못하고 있다. SW 전문개발자를 양성하기 위해서는 초급개발자들이 지속적으로 직무를 수행하여 풍부한 업무경험을 갖춘 고급 개발자로 성장해야 하기 때문이다. 이에, 본 연구는 국내 SW업체에서 근무하고 있는 개발관련 인력들의 업무 지속수행 의도를 조사하고, 이에 영향을 주는 주요요인들을 분석하였다. 이를 위해, 2014년 9월부터 10월까지 국내 SW업체에 근무하고 있는 현직 개발자 총 130명을 대상으로 설문조사를 수행하였으며, 이를 기반으로 SW개발업무 지속수행의도 및 이에 영향을 주는 요인들을 개발자의 특성, 직무환경, 그리고 SW개발자에 대한 사회적 인식 및 산업전망 등의 측면에서 분석하였다. 분석에는 데이터마이닝 기법들 중에서, 분석과정에서의 설명능력이 있는 회귀분석과 의사결정나무가 사용되었다. 회귀분석 결과, SW개발자가 스스로 인식하는 근무 가능한 연령이 높을수록, 내성적인 성향을 가질수록, 또한 적성에 맞아서 직무를 선택한 경우, 지속적 직무 수행 의도가 높은 것으로 나타났다. 이와 더불어, 선형회귀분석에서는 유의하지 않았으나, 규칙기반의 의사결정나무 분석에서 파악된 추가적 요인으로, 새로운 기술에 대한 학습능력 및 SW산업에 대한 전망이 직무 지속수행의도에 영향을 미치는 것으로 나타났다. 이러한 연구결과는 기업의 인적자원관리 및 고급 SW인력 양성정책에 활용될 수 있을 것으로 생각되며, 궁극적으로 SW개발인력의 직무 지속성을 증진시키는 데 기여할 수 있을 것으로 기대된다.

효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용 (A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market)

  • 이모세;안현철
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.167-181
    • /
    • 2018
  • 지난 10여 년간 딥러닝(Deep Learning)은 다양한 기계학습 알고리즘 중에서 많은 주목을 받아 왔다. 특히 이미지를 인식하고 분류하는데 효과적인 알고리즘으로 알려져 있는 합성곱 신경망(Convolutional Neural Network, CNN)은 여러 분야의 분류 및 예측 문제에 널리 응용되고 있다. 본 연구에서는 기계학습 연구에서 가장 어려운 예측 문제 중 하나인 주식시장 예측에 합성곱 신경망을 적용하고자 한다. 구체적으로 본 연구에서는 그래프를 입력값으로 사용하여 주식시장의 방향(상승 또는 하락)을 예측하는 이진분류기로써 합성곱 신경망을 적용하였다. 이는 그래프를 보고 주가지수가 오를 것인지 내릴 것인지에 대해 경향을 예측하는 이른바 기술적 분석가를 모방하는 기계학습 알고리즘을 개발하는 과제라 할 수 있다. 본 연구는 크게 다음의 네 단계로 수행된다. 첫 번째 단계에서는 데이터 세트를 5일 단위로 나눈다. 두 번째 단계에서는 5일 단위로 나눈 데이터에 대하여 그래프를 만든다. 세 번째 단계에서는 이전 단계에서 생성된 그래프를 사용하여 학습용과 검증용 데이터 세트를 나누고 합성곱 신경망 분류기를 학습시킨다. 네 번째 단계에서는 검증용 데이터 세트를 사용하여 다른 분류 모형들과 성과를 비교한다. 제안한 모델의 유효성을 검증하기 위해 2009년 1월부터 2017년 2월까지의 약 8년간의 KOSPI200 데이터 2,026건의 실험 데이터를 사용하였다. 실험 데이터 세트는 CCI, 모멘텀, ROC 등 한국 주식시장에서 사용하는 대표적인 기술지표 12개로 구성되었다. 결과적으로 실험 데이터 세트에 합성곱 신경망 알고리즘을 적용하였을 때 로지스틱회귀모형, 단일계층신경망, SVM과 비교하여 제안모형인 CNN이 통계적으로 유의한 수준의 예측 정확도를 나타냈다.

IT교육 서비스품질이 교육만족도, 현업적용의도 및 추천의도에 미치는 영향에 관한 연구: 학습자 직위 및 참여동기의 조절효과를 중심으로 (A Study on the Influence of IT Education Service Quality on Educational Satisfaction, Work Application Intention, and Recommendation Intention: Focusing on the Moderating Effects of Learner Position and Participation Motivation)

  • 강려은;양성병
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.169-196
    • /
    • 2017
  • 제4차 산업혁명의 도래로 IT(information technology)를 활용한 다양한 융합기술에 대한 관심이 높아지고 있으며, 이에 따른 고품질의 IT관련 교육서비스 제공의 필요성 및 중요성 또한 점차 증대되고 있다. 한편, 일반적인 교육서비스 품질 및 만족도에 관한 연구는 그 동안 다양한 맥락에서 활발히 진행된 바 있으나, IT교육 참가자를 대상으로 한 IT교육 서비스품질의 역할을 살펴본 연구는 상대적으로 부족한 것으로 파악된다. 이에 본 연구에서는 SERVPERF 모형 및 관련 선행연구를 바탕으로 IT교육 맥락에서 IT교육 서비스품질의 다섯 가지 차원(유형성, 신뢰성, 반응성, 확신성 및 공감성)을 도출하고, 이러한 세부 IT교육 서비스품질 요인이 학습자의 교육만족도, 나아가 현업적용의도 및 추천의도에 미치는 영향을 검증하였다. 또한, 이러한 영향이 학습자 직위(실무자 집단/관리자 집단) 및 참여동기(자발적 참여집단/비자발적 참여집단)에 따라 어떻게 달라지는지에 대한 추가분석도 실시하였다. 서울 소재 'M'교육기관 203명의 IT교육 참가자 대상 설문을 활용한 구조방정식모형 분석 결과, IT교육 서비스품질의 다섯 가지 차원 가운데 유형성, 신뢰성 및 확신성이 교육만족도에 유의한 영향을 주는 것으로 나타났으며, 이러한 교육만족도는 현업적용의도와 추천의도에도 유의한 영향을 주는 것으로 조사되었다. 또한, IT교육 서비스품질이 교육만족도에 미치는 영향 관계에서 학습자 직위 및 참여동기가 유의한 조절효과를 가진다는 사실을 확인하였다. 본 연구는 SERVPERF 모형을 활용하여 IT교육 맥락에서 IT교육 서비스품질의 영향력을 실증한 최초의 연구라는 점에서 학술적 의의가 있다. 본 연구결과가 IT교육 서비스 제공기관의 교육만족도 제고 및 효율적인 서비스 운영을 위한 실질적인 지침을 제공해 줄 수 있을 것으로 기대한다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

지능형 전망모형을 결합한 로보어드바이저 알고리즘 (Robo-Advisor Algorithm with Intelligent View Model)

  • 김선웅
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.39-55
    • /
    • 2019
  • 최근 은행과 증권회사를 중심으로 다양한 로보어드바이저 금융상품들이 출시되고 있다. 로보어드바이저는 사람 대신 컴퓨터가 포트폴리오 자산배분에 대한 투자 결정을 실행하기 때문에 다양한 자산배분 알고리즘이 활용되고 있다. 본 연구에서는 대표적 로보어드바이저 알고리즘인 블랙리터만모형의 강점을 살리면서 객관적 투자자 전망을 도출할 수 있는 지능형 전망모형을 제안하고 이를 내재균형수익률과 결합하여 최종 포트폴리오를 도출하는 로보어드바이저 자산배분 알고리즘을 새로이 제안하며, 실제 주가자료를 이용한 실증분석 결과를 통해 전문가의 주관적 전망을 대신할 수 있는 지능형 전망모형의 실무적 적용 가능성을 보여주고자 한다. 그동안 주가 예측에서 우수한 성과를 보여주었던 기계학습 방법 중 SVM 모형을 이용하여 각 자산별 기대수익률에 대한 예측과 예측 확률을 도출하고 이를 각각 기대수익률에 대한 투자자 전망과 전망에 대한 신뢰도 수준의 입력변수로 활용하는 지능형 전망모형을 제안하였다. 시장포트폴리오로부터 도출된 내재균형수익률과 지능형 전망모형의 기대수익률, 확률을 결합하여 최종적인 블랙리터만모형의 최적포트폴리오를 도출하였다. 주가자료는 2008년부터 2018년까지의 132개월 동안의 8개의 KOSPI 200 섹터지수 월별 자료를 분석하였다. 블랙리터만모형으로 도출된 최적포트폴리오의 결과가 기존의 평균분산모형이나 리스크패리티모형 등과 비교하여 우수한 성과를 보여주었다. 구체적으로 2008년부터 2015년까지의 In-Sample 자료에서 최적화된 블랙리터만모형을 2016년부터 2018년까지의 Out-Of-Sample 기간에 적용한 실증분석 결과에서 다른 알고리즘보다 수익과 위험 모두에서 좋은 성과를 기록하였다. 총수익률은 6.4%로 최고 수준이며, 위험지표인 MDD는 20.8%로 최저수준을 기록하였다. 수익과 위험을 동시에 고려하여 투자 성과를 측정하는 샤프비율 역시 0.17로 가장 좋은 결과를 보여주었다. 증권계의 애널리스트 전문가들이 발표하는 투자자 전망자료의 신뢰성이 낮은 상태에서, 본 연구에서 제안된 지능형 전망모형은 현재 빠른 속도로 확장되고 있는 로보어드바이저 관련 금융상품을 개발하고 운용하는 실무적 관점에서 본 연구는 의의가 있다고 판단된다.