• Title/Summary/Keyword: Fire-retardant performance

Search Result 88, Processing Time 0.023 seconds

A Study on the Flash Over Delay Method for a Previously Constructed Building with Sandwich Panel Structure (샌드위치패널구조 기축건축물의 플래시오버 지연 공법 연구)

  • Kim, Do-Hyun;Cho, Nam-wook
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.71-80
    • /
    • 2017
  • The purpose of this study is to applied reinforcement method at the joint part of the sandwich panel. Becasue the joint part of the sandwich panel has a disadvantage that flame spreads fast inside steel plates in the event of fire, leading to a big fire rapidly. In this study, the combustion performance was measured through KS F ISO 13784-1 "Reaction-to-fire tests for sandwich panel building systems" according to the application of reinforcement method to prevent flame from being brought into the internal joint of the sandwich panel. For the reinforcement inside the panel, the tape produced using expanded graphite-based heat-expandable glass fiber was attached. As a result, it was confirmed that the prevention of flame from being brought into the internal joint could delay the flash over time and the collapse of the test specimen.

Preparation of EVA/Intumescent/Nano-Clay Composite with Flame Retardant Properties and Cross Laminated Timber (CLT) Application Technology (난연특성을 가지는 EVA/Intumescent/나노클레이 복합재료 제조 및 교호집성재(Cross Laminated Timber) 적용 기술)

  • Choi, Yo-Seok;Park, Ji-Won;Lee, Jung-Hun;Shin, Jae-Ho;Jang, Seong-Wook;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-84
    • /
    • 2018
  • Recently, the importance of flame retardation treatment technology has been emphasized due to the increase in urban fire accidents and fire damage incidents caused by building exterior materials. Particularly, in the utilization of wood-based building materials, the flame retarding treatment technology is more importantly evaluated. An Intumescent system is one of the non-halogen flame retardant treatment technologies and is a system that realizes flame retardancy through foaming and carbonization layer formation. To apply the Intumescent system, composite material was prepared by using Ethylene vinyl acetate (EVA) as a matrix. To enhance the flame retardant properties of the Intumescent system, a nano-clay was applied together. Composite materials with Intumescent system and nano - clay technology were processed into sheet - like test specimens, and then a new structure of cross laminated timber with improved flame retardant properties was fabricated. In the evaluation of combustion characteristics of composite materials using Intumescent system, it was confirmed that the maximum heat emission was reduced efficiently. Depending on the structure attached to the surface, the CLT had two stages of combustion. Also, it was confirmed that the maximum calorific value decreased significantly during the deep burning process. These characteristics are expected to have a delayed combustion diffusion effect in the combustion process of CLT. In order to improve the performance, the flame retardation treatment technique for the surface veneer and the optimization technique of the application of the composite material are required. It is expected that it will be possible to develop a CLT structure with improved fire characteristics.

High Temperature Properties in Finishing Mortars of Exterior Insulation Finishing System Using Fly Ash and Waste Glass Powder (플라이애시와 폐유리분말을 사용한 외단열용 마감모르타르의 고온 특성)

  • Song, Hun;Shin, Hyeon Uk
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.64-72
    • /
    • 2019
  • Fly ash has different chemical composition depending on the type and quality of flaming coal. Fly ash is classified according to carbon content and particle size. Waste glass powder is manufactured by crushing glass. Exterior Insulation Finish System (EIFS) is generally applied by using poly-styrene foam which is economical and has excellent thermal insulation performance. However, poly-styrene foam has excellent insulation performance, but it is vulnerable to fire, which is becoming a serious problem. In this study, using a fly ash and waste glass powder to produce a finishing mortar at high temperatures. Also, High temperature strength and flame retardant properties were tested according to the cover thickness. From the test result, finishing mortar prepared using fly ash and waste glass powder is due to the improved heat resistance by alkali-activated bonding. However, since the strength decreases at high temperatures, it is necessary to select an appropriate mixing proportion.

Experimental Study on the Flash Over Delay Effects according to the Prevention of Flame Spread between Composite Material Panels (복합자재의 패널 간 화염확산방지에 따른 플래시오버 지연 효과에 대한 실험적 연구)

  • Kim, Do-hyun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • A sandwich panel is a composite material composed of a double-sided noncombustible material and insulation core which is used in the inner, outer walls, and roof structure of a building. Despite its excellent insulation performance, light weight and excellent constructability, a flame is brought into the inside of the panel through the joint between the panels, melting the core easily and causing casualties and property damage due to the rapid spread of flame. The current Building Law provides that the combustion performance of finishing materials for buildings should be determined using a fire test on a small amount of specimen and only a product that passes the stipulated performance standard should be used. This law also provides that in the case of finishing materials used for the outer walls of buildings, only materials that secured noncombustible or quasi-noncombustible performance should be used or flame spread prevention (FSP) should be installed. The purpose of this study was to confirm the difference between the dangers of horizontal and vertical fire spread by applying FSP, which is applied to finishing materials used for the outer walls of buildings limitedly to a sandwich panel building. Therefore, the combustion behavior and effects on the sandwich panel according to the application of FSP were measured through the construction to block the spread of flame between the panels using a full scale fire according to the test method specified in ISO 13784-1 and a metallic structure. The construction of FSP on the joint between the panels delayed the spread of flame inside the panels and the flash over time was also delayed, indicating that it could become an important factor for securing the fire safety of a building constructed using complex materials.

A Study on the Properties of the Heavy Duty Rust-Converting Agent used in the Potential Hazard Areas of Fire & Explosion (잠재적 화재.폭발 위험 지역 작업용 녹전환형 중방식 코팅제의 특성에 관한 연구)

  • 강영구
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.3
    • /
    • pp.102-111
    • /
    • 1998
  • This study was concerned with the development of a heavy duty rust-converting agent, the function of which is to form metal complex coatings, containing vinyl halide-acrylic terpolymer emulsion, defoamer, emulsifying agent, glass flakes, chelating agent such as gallotannic acid, gallic acid, and pyrogallic acid, and other additives. The resulted emulsion products(Sample No.1~No.5) were characterized through test either in the forms of emulsions, which include Viscosity, Penetration rate, Acidity and Film drying rate test, or in the forms of coated layer on rusty steel substrates by FT-IR, which include hardness, gloss, salt spray, adhesion and flame retardant test. The test results are as follows ; Penetration rate(0.1~0.4 mm/min), Solid content(70%), Acidity (pH 1.8~2.0), Specific gravity(1.30~1.35), Film drying rate(108min, RH 40% ; 150min, RH 80%), Gloss(83~92, incident angle $60^{\circ}$; 88~97, incident angle $85^{\circ}$), Pencil hardness(4H~5H), Adhesion (100/100), Salt spray test(>720Hr), LOI(%) value(38%), Vertical burning test(UL 94-v-l). According to the various performance of specimens show above, the evaluation of the availability of this heavy duty rust-converting agent can be concluded that all the samples(No.1~No.5) are capable of being used in the field of chemical plant and in the hazard areas of fire and explosion potential. It was observed that the properties of sample No.2, especially gloss and hardness, were much better than that of the other samples.

  • PDF

Study on Property Modification with Polymer Compositions in the Manufacture of Compounds for Cable Sheath

  • Li, Xiang Xu;Lee, Sang Bong;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.220-224
    • /
    • 2019
  • Herein, three polymer compounds were manufactured using three polymer combination methods, ethylene-vinyl acetate/ethylene-propylene-diene-copolymer (EPDM), ethylene-vinyl acetate (EVA)/polyethylene-A (PE-A; density: 0.870), and ethylene-vinyl acetate (EVA)/polyethylene-B (PE-B; density: 0.885), for making cable sheath for use in the shipping industry. In this study, EVA, EPDM, PE-A, and PE-B were used as matrix polymers, and EVA-grafted maleic anhydride was used as a coupling agent for compounding with various compounds such as a fire retardant, cross-linking agent, filler, and other additives, besides the plasticizer. ${\Delta}T$, Mooney viscosity, and tensile strength increased in order of EPDM < PE-A < PE-B, the probable reason is due to the different crosslinking effect. The three compounds showed similar results for fire resistance and aging resistance after compounding process, but they showed excellent cold resistance owing to the non-polarity of the polymers and sufficient plasticizer content.

A Study on ASET Elongation & Notification Time to Fire Stations for the Escape Safety of Aged Bedridden Patients in Elderly Long-term Medical Care (노인의료복지시설 화재 시 와상노인의 피난안전성 제고를 위한 피난허용시간 연장과 소방기관으로의 통보시간 연구)

  • Park, Hyung-Joo;Lee, Young-Jae
    • Fire Science and Engineering
    • /
    • v.32 no.4
    • /
    • pp.50-59
    • /
    • 2018
  • Recently, huge life losses occurred in the elderly long-term medical care fires due to lack of escape safety. As part of the measures to enhance the effectiveness of fire escape safety, while they prolong the available safe egress time (ASET) of non fire compartments, a measure to shorten fire-fighter's arrival time by fire alarm notifying device should be implemented in these facilities. The four categories from the aspects of fire prevention/protection engineering were provided with the necessary component technologies for carrying out these helper-guided evacuations. Fire prevention engineered technology was presented by two provisions; one for ensuring small compartment sections by installing the fire rated wall between bed rooms and another for ensuring the fire retardant or/and non-flammable performance of finishing materials. Also fire protection engineered technology was presented by two items; one for imposing cooling effects by sprinklers and another for providing automatic fire alarm notifying functions to fire stations. In order to improve the escape safety of these facilities in Korea, alternative revisions may presented by considering insufficient provisions in the architectural/fire law provisions by analyzing the provisions of Japanese and domestic laws in detail.

A Study on the Fire Risk Comparison of Building Flooring Materials by External Heat Flux (건축용 바닥재의 외부복사열에 의한 화재위험성 비교 연구)

  • Park, Youngju;Kim, Youngtak
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.20-24
    • /
    • 2017
  • In this study, we have performed the Cone Calorimeter test in accordance with ISO 5660-1 to check the combustion characteristics of building flooring materials. The fire risk of these materials were evaluated by construction code, KFI criteria and standards of flame retardant performance. When samples exposed to external heat flux, all samples consumed a lot of Oxygen for a long time. So heat release from sample burning continued so long. And also all samples produced so much smoke. Even though a few samples were satisfied with only peak heat release rate criteria, all 8 samples were not satisfied with criteria of peak heat release rate and total heat released together. The results of 5 min total heat released were $15.9MJ/m^2{\sim}5.9MJ/m^2$. It menas the results are more than 2~6 times higher than the criteria. The results of 10 min total heat released were $30.1MJ/m^2{\sim}100.8MJ/m^2$. It means the results are more than 3~12 times higher than the criteria. 6 of 8 samples were not satisfied with Dm.corr.(corrected maximum smoke density) criteria. The building flooring materials which we used for this test ignited very fast and the burning continued so long. It means these samples are susceptible to fire.

Flame Retardancy of Plywood Treated with Various Water Glass Concentration and Additives (물유리의 농도와 첨가제 종류에 따른 방염제의 성능)

  • PARK, Sohyun;HAN, Yeonjung;SON, Dong Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.44-56
    • /
    • 2021
  • The carbonized length and area of plywood by the various spreading concentration of water glass and the type of additives were measured in accordance with the 45° MecKel's burner method of the fire protection performance standard of the Korean National Fire Agency. As a result of treating water glass with a concentration of 20 to 50 % on plywood, the flame retardancy tended to increase in proportion to the concentration of water glass. However, the optimum concentration of water glass was determined to be 30 % due to the efflorescence and sticky on the surface of plywood treated with high-concentration water glass of more than 30 %. As a result of the experiment by adding different proportions of additives to the water glass with concentration of 30 %, the standard of flame performance standard was satisfied under the conditions with the addition of 15% potassium hydroxide and 1-10% aluminum hydroxide, respectively. On the other hand, there were no significant difference in the flame retardancy by adding magnesium sulfate. These results about the flame retardancy of plywood by water glass and additives were expected to be basic data for improving flame-retardant treated wood.

Properties and Thermal Characteristics of Phenol Foam for Heat Insulating Materials (단열재용 페놀폼의 물성과 열적특성)

  • Kim, Dong-Kwon;Lee, Soo-Bok
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.357-360
    • /
    • 2006
  • In this study, we studied the physical properties and application of PF foam as heat insulating materials. In the experimental results, the density of PF foam showed $0.030g/cm^3$ and the thermal conductivity showed $0.026kcal/m.h.^{\circ}C$. Also, thermal resistance of the prepared PF foam was volatilized about 71.7 wt% when the temperature was $500^{\circ}C$ (1 h). And the chemical structure of PF foam have a closed cell type in the important properties as heat insulating materials. Therefore, it was confirmed that the prepared PF foam had excellent performance as heat insulating materials.