• Title/Summary/Keyword: Fire-retardant performance

Search Result 88, Processing Time 0.019 seconds

Tests of Fire and Flame Retardant Performance for Membrane Materials (막재료의 난연 및 방염성능 실험에 대한 연구)

  • Kim, Gee-Cheol;Choi, Kwang-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.2
    • /
    • pp.55-60
    • /
    • 2016
  • The Membrane structure has a number of problems in the application of a fireproof code based on general buildings codes. Thus, the fireproof code of membrane structure is necessary to activate the construction of the membrane structure. Because it requires a systematic classification of fire retardant and flame proof performance of membrane material. Fire retardant and flame proof tests are conducted on membrane materials mostly used in current construction to propose the fire and flame retardant performance criteria of membrane materials. Fire and flame retardant tests results, PTFE membrane material with the glass fiber fabric have a limit-combustible performance. PVDF membrane material with the polyester fabric does not ensure the fire retardant performance, but this membrane material has the flame retardant performance of a thick fabric. Also, ETFE does not ensure the fire retardant performance, but this membrane material has the flame retardant of a thin fabric.

A Study on the Flame Retardant Performance of MDF Wood According to Flame Retardant Treatment Method (방염처리 방법에 따른 MDF 목재의 방염성능에 관한 연구)

  • Cha, Jung-Min;Hyun, Seong-Ho;Kim, In-Beom;Yoon, Myung-O
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.146-155
    • /
    • 2011
  • In the study, test was carried out to compare the flame retardant performance for the specimen of MDF wood to which field flame retardant treatment (post processing flame retardant) is applied, which is coated with flame retardant film of 5 companies, locally distributed, and MDF wood (nontreated, flame retardant film non-coated) to which aqueous or oil-based fire-retardant paint is applied. As a result of combustion test of MDF wood which was coated with flame retardant film of 5 companies, 2 products showed suitable values in 4 criteria, but other 3 products showed 10~40 % disqualification rate. In regard of characteristics of fire-retardant paint, oil-based fire-retardant paint is better than aqueous fire-retardant paint in flame retardant performance criteria, but MDF wood to which oilbase fire-retardant paint was applied was shown to have higher toxicity index grade than MDF wood to which aqueous fire-retardant paint was applied relatively.

A Study on the Treatment of Suitable Flame Retardant to the Fibers for Welding Blanket Development (용접 불티 차단막 개발을 위한 섬유류의 적정 방염처리 방안 연구)

  • 이근원;김관응;이두형
    • Fire Science and Engineering
    • /
    • v.16 no.3
    • /
    • pp.48-55
    • /
    • 2002
  • This study presents a treatment of suitable flame retardant through evaluating fire performance after treating flame retardant of fibers for development of welding blanket. The experimental samples used were commercial fibers and we are treated fibers with the flame retardant liquid and the flame retardant paint. The fire performance of the sample was carried out according to the Korea and Japan Standard. As the results of the fire performance experiment, the treated fiber in samples had enough in the performance of flame and fire retardant and the grade of their was from grade A to grade C according to flame and fire retardant standard. The lower oxygen index indicated that all treated samples with the resist are satisfied with international standard. We con-sider that the welding blanket treated with grade A, B and C performance prevents fire spread regardless of the height of work stairs in the case of installation horizontally. Also, it is considered that the welding blanket treated with grade C performance prevents fire spread regardless of the height of work stairs in the case of installation vertically.

Comparative Analysis of Flame Retardant Performance of Japanese Cypress Plywood Based on the Main Ingredients of Fire Retardant Paint (도료의 주성분에 따른 편백 합판의 방염성능 비교 분석)

  • Soo-Hee Lim;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2023
  • The purpose of this study is to compare and analyze the flame retardant performance of Japanese cypress(Chamaecyparis obtusa) plywood, commonly used in indoor decoration, furniture, and tableware, by treating it with three different fire retardants with different primary ingredients. The experiment was conducted in compliance with Article 31, Paragraph 2 of the Enforcement Decree of the Fire Facilities Installation and Management Act and Articles 4 and 7-2 of the Flame Retardant Performance Standards. After flame time, after glow time, char length, and char area were measured. As a result, first, after flame time was measured at 0 seconds regardless of whether the flame retardant treatment was applied. Second, after glow time was relatively long, measuring 22.7 seconds without treatment, which is likely due to the weak fire resistance and high concentration of carbon monoxide generated by the chemical characteristics of the Japanese cypress itself. Third, it was confirmed that the effects of the primary ingredient, phosphorus, in the flame retardant treatment varied depending on the technological development of the manufacturers of the same species of Japanese cypress plywood. In the future, it is expected that the results of this study will provide fundamental data to select flame retardant treatments that show high flame retardant performance according to the botanical characteristics of the wood.

Fire Performance Testing Method for Fire Retardant EPS Sandwich Panel Using X-ray Analysis (X-선 분석법을 이용한 난연 EPS 샌드위치 패널의 화재성능평가 방법에 관한 연구)

  • Shim, Ji-Hun;Cho, Nam-Wook
    • Fire Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.76-83
    • /
    • 2015
  • EPS sandwich panel contains flame retardants that slow down ignition during fires,reduce the amount of heat generated, and block the spread of combustion. However, if a sandwich panel does not satisfy standards for fire-retardant performance, it may increase damage to property and human life. It is difficult to test the fire-retardant performance of a finishing material with the naked eye, so it is necessary to develop convenient and fast evaluation methods that are convenient and fast. In this study, a fire safety evaluation method for EPS sandwich panel was analyzed using X-ray to detect specific components related to the fire-retardant performance X-ray fluorescence analysis (XRF) indicated that suitable panel products contained more aluminum in comparison to unsuitable products. Gibbsite was identified as the main crystalline material of flame retardant EPS through X-ray diffraction analysis (XRD) and was included in both suitable products and unsuitable products, but there was a difference in crystalline structure. This study was verifies the possibility of evaluating fire-retardant performance using ultimate analysis and crystal analysis through these X-ray methods.

An Evaluation of Flame and Fire Retardant Performance for Welding Blanket (용접 불티 차단막의 방염 및 난연성능 평가)

  • 이근원;권오승;하동명
    • Fire Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.53-58
    • /
    • 2001
  • This study was undertaken to evaluate the performance of flame retardant for fire precaution from sparks at welding-cutting process in industry sites such as shipbuilding yard and chemical factory. As the results of the performance experiment, six kinds of welding blanket in samples that are used commercially had enough in the performance of flame retardant. Nevertheless, the performance to fire precaution un welding blanket shows that the coaling product of two kinds with fiber glass is not sufficient. The lower oxygen index to welding blanket is considered that it is more than 30 in domestic standard. We suggested that the performance improvement of flame retardant for welding blanket need continuously, and the guideline of the flame retardant to welding blanket should be considered and established.

  • PDF

A Study on the Ways of Securing the Effectiveness of Field Flame Retardant Coating Process (현장방염처리제도의 실효성 확보 방안에 관한 연구)

  • Park, Sung-Hyun;Baek, Eun-Sun
    • Fire Science and Engineering
    • /
    • v.25 no.2
    • /
    • pp.95-100
    • /
    • 2011
  • The ultimate purpose of this study is to improve the irrational system related to flame retardant coating performance test of field flame retardant coating articles and to secure the reliability of flame retardant coating through rational flame retardant coating test. To achieve this, the analysis was conducted on the interior finishing materials used in the interior fields and the trends of recent field flame retardant coating, based on the results of flame retardant coating performance test of field flame retardant coating articles which the first-line fire stations have recently conducted. And I attempted to present the methods of field flame retardant coating performance test suitable to current realities and the ways of improvement for securing reliability by analyzing the problems with the methods and procedures of field flame retardant coating articles and the registration system of flame retardant coating business.

An Experimental Study on the Development of Fire-retardant Treated Wood for Construction (건축용 난연 목재 개발에 대한 실험 연구)

  • Seo, Hyun Jeong;Kim, Nam Kyun;Jo, Jeong Min;Lee, Min Chul
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.149-156
    • /
    • 2017
  • This study investigates fire-retardant performances and combustion/thermal characteristics of fire-retardant treated wood by comparing them with those of fire-retardant untreated wood from the expreimental resutls of cone calorimeter and thermo-gravimetric(TG) analyzer. Hazardousness of combustion product gases for fire-retardant treated wood and untreasted wood were also observed from the results of internal finish material incombustibility test according to the Korea standard code of KS F 2271. In this study, we also tried to improve the fire retardant performance of wood by applying fire-retardant chemical composites, and to secure the fire safety performance in buildings. Red pine (Pinus densiflora) was selected as a test specimen because it is mostly used as a building material in Korea. Fire retardant chemical composites (FRCs) were prepared by mixing boron, phosphorous, and nitrogen species and treated by press-impregnation method. Water-based FRCs were composed of 3% boric acid($H_3BO_3$), 3% borax decahydrate($Na_2B_4O_7$), 8% ammonium carbonate($(NH_4)_2CO_3$), diammonium phosphate ($(NH_4)_2HPO_4$) varied from 10-30% and potassium carbonate($K_2CO_3$) varied from 10-30%. From the test results of cone calorimeter, TG analysis and gas hazard assessments, newly proposed were the optimal composition and production methods of FRCs which can sufficiently meet fire-retardant level 3 based on Korea law of construction. Thus, the FRCs, developed in this study, are anticipated to contribute to the improvement of fire safety and widespread of usage in wood as building materials.

A Study on Validation Methodology of Fire Retardant Performance for Cables in Nuclear Power Plants (원자력발전소 케이블 난연성능 검증 방법론 개선을 위한 연구)

  • Lee, Sang Kyu;Moon, Young Seob;Yoo, Seong Yeon
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.140-144
    • /
    • 2017
  • Fire protection for nuclear power plants should be designed according to the concept of "Defense in Depth" to achieve the reactor safety shutdown. This concept focuses on fire prevention, fire suppression and safe shutdown. Fire prevention is the first line of "Defense in Depth" and the licensee should establish administrative measures to minimize the potential for fire to occur. Administrative measures should include procedures to control handling and use of combustibles. Electrical cables is the major contributor of fire loads in nuclear power plants, therefore electrical cables should be fire retardant. Electrical cables installed in nuclear power plants should pass the flame test in IEEE-383 standard in accordance with NUREG-0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants". To assure the fire retardant of electrical cables during design life, both aged and unaged cable specimens should be tested in accordance with IEEE-383. It can be generally thought that the flammability of electrical cables has been increased by wearing as time passed, however the results from fire retardant tests performed in U.S.A and Korea indicate the inconsistent tendency of aging and consequential decrease in flammability. In this study, it is expected that the effective methodology for validation of fire retardant performance would be identified through the review of the results from fire retardant tests.

A Study on the Flame Retardant Performance and Toxicity of the Painting Wood Painted with Flame Retardant Solution (방염처리된 단청목재의 방염성능 및 유독성에 관한 연구)

  • Kim, In-Beom;Hyun, Seong-Ho
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.66-71
    • /
    • 2009
  • In this study, I evaluated toxicity that analyze performance of flame-retardant about flame-retardant painting wood and combustion gas that is based on the toxicity index. Processing condition of flame retardant solution and treatment method of samples didn't affect greatly to performance of flame retardant. Occurrence of combustion gas showed a almost similar result from the sample which spraying flame retardant solution and toxicity corresponds to high level, Hazard Class III, and the flame retardant solution saturation sample which makes put out Hazard Class II which is a low toxicity relatively.