• Title/Summary/Keyword: Fire-Event Detection

Search Result 31, Processing Time 0.026 seconds

A Study on Flame and Smoke Detection Method of a Tunnel Fire (터널 화재의 화염 및 연기 검출 기법 연구)

  • Lee, Jeong-Hun;Lee, Byoung-Moo;Han, Dong-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1027-1028
    • /
    • 2008
  • In this paper, we proposed image-processing technique for automatic real-time fire and smoke detection in tunnel fire environment. To minimize false detection of fire in tunnel we used motion information of video sequence. And this makes it possible to detect exact position of event in early stage with detection, test, and verification procedures. In addition, by comparing false detection elimination results of each step, we have proved the validity and efficiency of proposed algorithm.

  • PDF

Fuzzy event tree analysis for quantified risk assessment due to oil and gas leakage in offshore installations

  • Cheliyan, A.S.;Bhattacharyya, S.K.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-55
    • /
    • 2018
  • Accidental oil and gas leak is a critical concern for the offshore industry because it can lead to severe consequences and as a result, it is imperative to evaluate the probabilities of occurrence of the consequences of the leakage in order to assess the risk. Event Tree Analysis (ETA) is a technique to identify the consequences that can result from the occurrence of a hazardous event. The probability of occurrence of the consequences is evaluated by the ETA, based on the failure probabilities of the sequential events. Conventional ETA deals with events with crisp failure probabilities. In offshore applications, it is often difficult to arrive at a single probability measure due to lack of data or imprecision in data. In such a scenario, fuzzy set theory can be applied to handle imprecision and data uncertainty. This paper presents fuzzy ETA (FETA) methodology to compute the probability of the outcomes initiated due to oil/gas leak in an actual offshore-onshore installation. Post FETA, sensitivity analysis by Fuzzy Weighted Index (FWI) method is performed to find the event that has the maximum contribution to the severe sequences. It is found that events of 'ignition', spreading of fire to 'equipment' and 'other areas' are the highest contributors to the severe consequences, followed by failure of 'leak detection' and 'fire detection' and 'fire water not being effective'. It is also found that the frequency of severe consequences that are catastrophic in nature obtained by ETA is one order less than that obtained by FETA, thereby implying that in ETA, the uncertainty does not propagate through the event tree. The ranking of severe sequences based on their probability, however, are identical in both ETA and FETA.

Design of an Autonomous Firefighting Robot System for Early Fire Suppression (초기 화재 진압을 위한 자율주행 소방 로봇 시스템 설계)

  • Hyo Min Kim;Jeong Yong Kim;Seong Jun Mun;A-hyeon Lee;Chang Su Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.3
    • /
    • pp.287-292
    • /
    • 2024
  • The initial suppression of fires is critical to protecting human and material resources. In response to this, fire prevention and suppression systems using artificial intelligence and robot technology have recently been studied. In particular, an autonomous driving system that detects a fire using CNN is attracting attention. These systems respond quickly in the event of a fire, enabling initial fire suppression. However, since the conventional system is not equipped with a fire suppression function, direct intervention of firefighters is required. (1) To overcome these limitations, we propose an autonomous fire detection robot system equipped with a fire suppression function ROS-based firefighting system called 'ADEFS' (Autonomous-Detect & Extinguish-Fire Service). (2) The system performs three tasks to detect and extinguish. Tasks are to run the Ros-based SLAM Navigation, YOLO-CNN, and Four-degree freedom manipulator connected to the fire extinguishing pump. (3) Through this, early response in the event of a fire can minimize damage to life and property and can reduce labor costs, which can also be expected to reduce costs for companies.

Statistics and Management Systems of Unwanted Domestic and Foreign Fire Alarms (국내·외 비화재보의 통계 및 관리체계에 관한 연구)

  • Hwang, Euy-Hong;Lee, Sung-Eun;Choi, Don-Mook
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.30-40
    • /
    • 2020
  • In the event of a fire and a disaster, prompt and accurate alarms inside and outside the building are directly related to the minimization of damage and the success of life evacuation. However, due to unwanted fire alarms in automated fire detection systems, the number of dispatches by misunderstanding in the 119 service is increasing. This causes the insensitivity to the safety of building managers and the waste of the fire-fighting power. Therefore, in this study, the statistical databases and literature on unwanted fire alarms in Korea and abroad (USA, UK) were identified and the management systems for unwanted fire alarms were compared and analyzed to identify problems of statistics in the management systems for unwanted fire alarms.

AI Fire Detection & Notification System

  • Na, You-min;Hyun, Dong-hwan;Park, Do-hyun;Hwang, Se-hyun;Lee, Soo-hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.63-71
    • /
    • 2020
  • In this paper, we propose a fire detection technology using YOLOv3 and EfficientDet, the most reliable artificial intelligence detection algorithm recently, an alert service that simultaneously transmits four kinds of notifications: text, web, app and e-mail, and an AWS system that links fire detection and notification service. There are two types of our highly accurate fire detection algorithms; the fire detection model based on YOLOv3, which operates locally, used more than 2000 fire data and learned through data augmentation, and the EfficientDet, which operates in the cloud, has conducted transfer learning on the pretrained model. Four types of notification services were established using AWS service and FCM service; in the case of the web, app, and mail, notifications were received immediately after notification transmission, and in the case of the text messaging system through the base station, the delay time was fast enough within one second. We proved the accuracy of our fire detection technology through fire detection experiments using the fire video, and we also measured the time of fire detection and notification service to check detecting time and notification time. Our AI fire detection and notification service system in this paper is expected to be more accurate and faster than past fire detection systems, which will greatly help secure golden time in the event of fire accidents.

Wildfire-induced Change Detection Using Post-fire VHR Satellite Images and GIS Data (산불 발생 후 VHR 위성영상과 GIS 데이터를 이용한 산불 피해 지역 변화 탐지)

  • Chung, Minkyung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1389-1403
    • /
    • 2021
  • Disaster management using VHR (very high resolution) satellite images supports rapid damage assessment and also offers detailed information of the damages. However, the acquisition of pre-event VHR satellite images is usually limited due to the long revisit time of VHR satellites. The absence of the pre-event data can reduce the accuracy of damage assessment since it is difficult to distinguish the changed region from the unchanged region with only post-event data. To address this limitation, in this study, we conducted the wildfire-induced change detection on national wildfire cases using post-fire VHR satellite images and GIS (Geographic Information System) data. For GIS data, a national land cover map was selected to simulate the pre-fire NIR (near-infrared) images using the spatial information of the pre-fire land cover. Then, the simulated pre-fire NIR images were used to analyze bi-temporal NDVI (Normalized Difference Vegetation Index) correlation for unsupervised change detection. The whole process of change detection was performed on a superpixel basis considering the advantages of superpixels being able to reduce the complexity of the image processing while preserving the details of the VHR images. The proposed method was validated on the 2019 Gangwon wildfire cases and showed a high overall accuracy over 98% and a high F1-score over 0.97 for both study sites.

A Study on the context-aware system for MRT (도시철도 환경에 적합한 상황인지 시스템 구현 방안에 관한 연구)

  • Yun, Byeong-Ju;Song, Jae-Won;Kim, Hee-Jin;An, Tae-Ki;Shin, Jeong-Ryol
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1984-1988
    • /
    • 2009
  • MRT has various surveillance systems for passenger's safety and facility protection which are consisted of fire detection, trespasser observation and so on. However, these systems are not closely related each other because it is designed just for its own purpose, so it could be make wrong decision to surveillance system without important information to determine an accident or disaster. For more accurate event detection, surveillance system needs total situation-aware method using complementary data. This study introduces context-aware system for complex and accurate event detection. Therefore, we apply context-aware system to MRT surveillance system, selecting context-aware parameters and appling them to it.

  • PDF

S-FDS : a Smart Fire Detection System based on the Integration of Fuzzy Logic and Deep Learning (S-FDS : 퍼지로직과 딥러닝 통합 기반의 스마트 화재감지 시스템)

  • Jang, Jun-Yeong;Lee, Kang-Woon;Kim, Young-Jin;Kim, Won-Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.50-58
    • /
    • 2017
  • Recently, some methods of converging heterogeneous fire sensor data have been proposed for effective fire detection, but the rule-based methods have low adaptability and accuracy, and the fuzzy inference methods suffer from detection speed and accuracy by lack of consideration for images. In addition, a few image-based deep learning methods were researched, but it was too difficult to rapidly recognize the fire event in absence of cameras or out of scope of a camera in practical situations. In this paper, we propose a novel fire detection system combining a deep learning algorithm based on CNN and fuzzy inference engine based on heterogeneous fire sensor data including temperature, humidity, gas, and smoke density. we show it is possible for the proposed system to rapidly detect fire by utilizing images and to decide fire in a reliable way by utilizing multi-sensor data. Also, we apply distributed computing architecture to fire detection algorithm in order to avoid concentration of computing power on a server and to enhance scalability as a result. Finally, we prove the performance of the system through two experiments by means of NIST's fire dynamics simulator in both cases of an explosively spreading fire and a gradually growing fire.

Evacuation Safety Evaluation for Apartment Complexes and Officetel under Floors (공동주택 및 오피스텔 지하층에 대한 피난 안전성 평가)

  • Hyeon-gwon Kang;Yong-Han Jeon
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.4
    • /
    • pp.67-72
    • /
    • 2023
  • Human and material damage can be reduced if the risk is evaluated by engineering analysis of fire combustion products, smoke concentration, and smoke movement speed in the event of a fire in apartment houses and officetels. In this study, a lot of research on related safety evaluation in the basement needs to be studied and reflected in design, so experimental research was conducted to analyze the flow of smoke through computer simulation and provide analysis data through evacuation safety evaluation. First of all, the five-story underground parking lot subject to simulation has a large floor area, which is advantageous for improving evacuation safety performance, but it uses temperature detectors to increase detection time and fire spread speed. Second, it was analyzed that the evacuation time at all evacuation ports did not exceed the evacuation time, and as the time from the start of evacuation to the evacuation time was 216.9% compared to the travel time, it was evaluated that the safety performance of the evacuation was secured. Third, the above simulation results are a comprehensive safety evaluation based on the non-operation of fire extinguishing facilities in the fire room to increase safety, which means that smoother evacuation safety performance can be secured by linking fire extinguishing facilities.

PID Controled UAV Monitoring System for Fire-Event Detection (PID 제어 UAV를 이용한 발화 감지 시스템의 구현)

  • Choi, Jeong-Wook;Kim, Bo-Seong;Yu, Je-Min;Choi, Ji-Hoon;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • If a dangerous situation arises in a place where out of reach from the human, UAVs can be used to determine the size and location of the situation to reduce the further damage. With this in mind, this paper sets the minimum value of the roll, pitch, and yaw using beta flight to detect the UAV's smooth hovering, integration, and derivative (PID) values to ensure that the UAV stays horizontal, minimizing errors for safe hovering, and the camera uses Open CV to install the Raspberry Pi program and then HSV (color, saturation, Brightness) using the color palette, the filter is black and white except for the red color, which is the closest to the fire we want, so that the UAV detects the image in the air in real time. Finally, it was confirmed that hovering was possible at a height of 0.5 to 5m, and red color recognition was possible at a distance of 5cm and at a distance of 5m.