• Title/Summary/Keyword: Fire school

Search Result 1,387, Processing Time 0.028 seconds

Analysis of Aerial Fire Line Construction Type on Forest Fire (산불 공중진화 방화선 구축형태에 관한 연구)

  • Bae, Taek-Hoon;Lee, Si-Young
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.04a
    • /
    • pp.443-447
    • /
    • 2010
  • 본 연구에서는 우리나라의 소 중 대형 산불의 공중진화 방화선 구축형태에 대하여 제안하였다. 산불확산은 현장의 지세, 경사, 바람, 수종 등에 영향을 받으므로 공중진화 방화선을 구축할 때에는 연소방향 및 형태, 강도 등을 분석한 후 진화작업을 실시하여야 하며, 공중진화 방화선 형태를 A형에서 M형까지 13개로 제안하였다.

  • PDF

Upward Flame Spread for Fire Risk Classification of High-Rise Buildings

  • McLaggan, Martyn S.;Gupta, Vinny;Hidalgo, Juan P.;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.299-310
    • /
    • 2021
  • External fire spread has the potential to breach vertical compartmentation and violate the fire safety strategy of a building. The traditional design solution to this has been the use of non-combustible materials and spandrel panels but recent audits show that combustible materials are widespread and included in highly complex systems. Furthermore, most jurisdictions no longer require detailing of spandrel panels under many different circumstances. These buildings require rapid investigation using rational scientific methods to be able to adequately classify the fire risk. In this work, we use an extensive experimental campaign of material-scale data to explore the critical parameters driving upward flame spread. Two criteria are outlined using two different approaches. The first evaluates the time to ignition and the time to burnout to assess the ability for a fire to spread, and can be easily determined using traditional means. The second evaluates the preheated flame length as the critical parameter driving flame spread. A wide range of cladding materials are ranked according to these criteria to show their potential propensity to flame spread. From this, designers can use conservative approaches to perform fire risk assessments for buildings with combustible materials or can be used to aid decision-making. Precise estimates of flame spread rates within complex façade systems are not achievable with the current level of knowledge and will require a substantial amount of work to make progress.

Finite Element Analysis of H-Shaped Compressive Member Exposed High Temperatures (고온에 노출된 H-형강 압축재의 유한요소해석)

  • Lee, Swoo-Heon;Lee, Hee-Du;Choi, Jun-Ho;Shin, Kyung-Jae
    • Fire Science and Engineering
    • /
    • v.30 no.5
    • /
    • pp.54-59
    • /
    • 2016
  • Steel is a structural material that is inherently noncombustible. On the other hand, it has high thermal conductivity and the strength and stiffness of the material are reduced significantly when exposed to fire or high temperatures. Because the yield strength and modulus of elasticity of steel are reduced by 70% at $350^{\circ}C$ and less than 50% at $600^{\circ}C$, the load-carrying capacity of steel structure at high temperature rapidly lose. To be accepted as a fire-resisting construction, the fire test should be performed at the certificate authority. On the other hand, the fire test on a full-scale structure is limited by time, space, and high-cost. The analytical method was verified by a comparison with the fire test of H-section columns under compression and thermal analysis based on a finite element method using the ABAQUS program, and the numerical analysis method reported in this study was suggested as a complement of an actual fire test.

Fire Characteristics for Spill Rate of Light oil and Methanol (경유와 메탄올의 유출속도에 따른 화재특성)

  • Lee, Jung Yun;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.54-60
    • /
    • 2016
  • In this study, tank truck incidents of road transport of hazardous materials to experimental investigated the potential fire hazard. Real scale fire was to perform experiments for on this qualitative and quantitative data collection and analysis. Particularly affected by radiant heat from the flames caused and damage estimates range investigated accordingly. Flame temperature, internal temperature of tank and emitted radiation from the flames was investigated. The flame of light oil spill caused a fire at a temperature of about $300^{\circ}C$ high in comparison with the methanol by combustion of diesel and methanol, according to the difference, the flame duration changes varies depending on the Burning rate. Depending on spill rate(30, 60, 90 and $120{\ell}/min$) and the longer the duration of the flame important factors for the internal temperature of tank lorry rise was found. Road accident in a fire caused by leakage of hazardous was could the higher the damaged. Therefor, Fire suppression activities should be required in particular to be around.

A Study on the Flame Behavior of Whirl Eire and Pool Fire (Whirl Fire와 Pool fire의 화염 거동에 관한 연구)

  • Oh Kyu-Hyung;Kang Youn-Ok;Lee Sung-Eun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.45-50
    • /
    • 2004
  • 4-panel of 1m height and 45cm width were fixed on the $40cm{\times}40cm$ bottom plate and the opening of the panel comer was 5cm. Diameter of stainless vessel is loom and its height is 2cm and it located at the center of the bottom plate. 78mL liquid fuel was filled in the vessel and its depth was 1cm. Flame temperature was measured with K type thermocouple, and radiation heat of flame was measured with heat flux meter. Flame height and its behavior was visualized with video camera. and mass burning rate was measured by fuel combustion time. According to the development of fire, flame swirling was begin. From the experiment the mass burning rate was larger and the height of flame was higher than the usual pool fire flame. Flame temperature and heat flux also increased far more than the pool fire. Consequently the swirling air flow through the openings between the panel and thermal buoyance contribute to increase of heat release rate, flame length and mass burning rate.

Real-time traffic situation analysis and fire type artificial intelligence application study when 119 fire trucks are dispatched Intelligence research (119 소방차 출동 시 실시간 교통상황 분석 및 화재유형 인공지능 적용 연구)

  • Lee, Han-young;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.222-224
    • /
    • 2022
  • Korea has more than 2,000 fires and more than 2,000 casualties every year. This study takes measures to facilitate the incorporation of 119 fire trucks by judging vehicles or standing signs using real-time image reading YOLO5 before the fire trucks arrive at the fire site. It is possible to shorten the time to extinguish a fire by photographing a fire site, transmitting the situation of the site, and analyzing the components of smoke to determine the type of fire. As a result, it is expected that it will be able to minimize casualties by keeping the golden time.

  • PDF

A Study on the Improvement of Fire Safety in high-rise Building Construction in Legal aspects (법규적 측면에서 고찰한 고층 건축물 공사현장 화재안전 확보방안)

  • Park, Chan-Seok;Jeong, Il-Kyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.21-32
    • /
    • 2015
  • High rising of the buildings offers a number of risk factors than ever before with regard to fire prevention. Especially in the construction site of high-rise buildings, people waste golden-time during the evacuation because temporary fire fighting facilities are not installed and transferred to a large fire because of fire suppression failure. In this study, the researcher derives the problems of fire protection in high-rise buildings construction sites and proposed the measures in such the legal aspects as fire building construction code and etc. There are the legal improvements such as orders of construction suspension in the problems of fire safety, appointing fire safety manager, temporary fire protection installation standards, enhancing penalty provisions regarding the use of fire, operating self fire brigade, confirming on-site after completing fire-protection facalities, establishment or strengthening special fire-protection investigations.