• Title/Summary/Keyword: Fire resistance properties

Search Result 307, Processing Time 0.023 seconds

Fire Resistance Properties of High Strength Concrete Made with Various Admixture Types and Fiber Content (혼화재 종류 및 섬유 혼입률 변화에 따른 고강도 콘크리트의 내화특성)

  • Jang, Ki-Hyun;Pei, Chang-Chun;Jin, Hu-Lin;Jee, Suk-Won;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.04a
    • /
    • pp.63-66
    • /
    • 2007
  • This study investigates the fire resistance properties of high strength concrete, around 60MPa class, designed with various admixture types and fiber content. Test showed that the increase of fiber content decreased the fluidity and slightly inclined the air content of fresh concrete. However, the fiber content in concrete did not affect the compressive strength. For the addition of admixture, specimens adding the shrinkage-reducing-agent (SR) indicated the strength value at 70MPa, which is followed by incorporating silica fume (SF) at 66MPa, the combination of expansive admixture (EA) and SR at 63MPa, only EA at 59MPa, blast furnace slag (BS) at 58MPa and fly ash (FA) at 50MPa in an order. After completing the fire test, all specimens adding 0.05vol.% of polypropylene fiber exhibited protection of spatting, except for the specimens incorporating loft of SF and incorporating 20% of SF with only SR and the combination of EP and SRA, respectively. Therefore the most effective result of this study was shown in the specimens incorporating love of FA and 30% of BS and incorporating 20% of SF with 5 % of EA. It is expected that this test results will be crucial references in near future to develope the spatting resistance method of high strength concrete.

  • PDF

Manufacture and Properties of Gypsum-Wood (Gypsum-Wood의 제조와 성질)

  • Lee, Jong-Shin;Kim, Soung-Joon
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.1
    • /
    • pp.83-90
    • /
    • 2008
  • Gypsum-wood composites were made by introducing inorganic substances into wood using calcium chloride, first treating solution, and sodium sulfate, secondary treating solution, by double diffusion process under atmospheric pressure at room temperature. The process conducted as follows: water saturated specimens were soaked in calcium chloride solutions at several concentration. Then the specimens were soaked further in saturated sodium sulfate solution, and they were leached in flowing tap water for 24h. To attain sufficient weight percent gain (WPG) values, the suitable concentration of calcium chloride and soaking time in saturated sodium sulfate solution were 20% and 48h, respectively. Inorganic substances were produced mainly in the lumina of tracheides. It was made sure that these substances were dihydrate gypsum($CaSO_4$ $2H_2O$) by X -ray microanalysis (SEM-EDX). The composites had good fire resistance due to low heat transfer rate of gypsum formed in wood. However, the composites had little decay resistances, because they showed high weight losses by test fungi attacks.

  • PDF

Investigation of Spalling Mechanism in High Performance Concrete Subjected to Fire (고성능 콘크리트의 화재시 폭렬성상에 관한 메카니즘 고찰)

  • Han, Min-Cheol;Kim, Seong-Hwan;Park, Yong-Kyu;Heo, Young-Sun;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.99-102
    • /
    • 2006
  • This paper reviews the relevant literatures and investigates spalling mechanism of high strength concrete, in order to clearly inform spalling problem in fire. Firstly, we studies literatures on spalling occurrence and resistance methods. Secondly chemical change of concrete components in elevated temperature was presented. Finally, mechanism of the spalling occurrence and spalling resistance were carried out with fiber content. In addition, our research team introduced spalling mechanism, being different from other points of view, which has been generally accepted. To secure this mechanism theory, we investigate spalling properties of certain specimens fabricated by roller spindle and made with mortar or concrete condition.

  • PDF

Fire Resistance of High Strength Concrete with Polypropylene and Vinylon Fiber (폴리프로필렌 및 비닐론 섬유를 혼입한 고강도콘크리트의 내화특성)

  • Nam Ji-Hyun;Oh Sang-Gyun;Kim Jung-Kil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.165-169
    • /
    • 2005
  • The fire damage of building wouid effect on the safety of structure. When the reinforced concrete structure is heated by high temperature due to the fire, the structural resisting-force will be decreased. In a way, it is a requirement to use high strength concrete for high rise building. Particularly, fire resistance properties of high-strength concrete is more important than normal strength concretes. The fire outbreak of a high strength concrete by sudden temperature rise is a main problem, and causes crack by thermal stress, loading to the deterioration of the durability. In this study, normal and high strength mortar were exposed to a high temperature environment. And than fundamental data for the character change of concrete heated highly were presented by measuring compressive strength of concrete with polypropylene and vinylon fiber, before and after heating. As the results, it is proven that high strength mortar with polypropylene and vinylon fiber for prevents deterioration of durability by fiber.

  • PDF

Behavior of Fire Resistance Engineered Cementitious Composites(FR-ECC) under Fire Temperature (화재 온도를 받는 고인성.고내화성 시멘트 복합체의 거동)

  • Han, Byung-Chan;Kwon, Young-Jin;Kim, Jae-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.189-197
    • /
    • 2007
  • Concrete tunnel lining must be designed to having the fireproof performance because the lining are sometimes exposed to very high temperature due to traffic accident. Such fire temperature may cause explosion of concrete, or collapse of tunnel structure. The purpose of this study is to obtain the fundamental fireproof behavior of fire resistance-engineered cementitious composites(FR-ECC) under fire temperature in order to use the fire protection material in tunnel lining system. The present study conducted the experiment to simulate fire temperature by employing 2 types of FR-ECC and investigated experimentally the explosion and cracks in heated surface of these FR-ECC. Employed temperature curve were hydro carbon(HC, ECl) criterion, which are severe in various criterion of fire temperature. The numerical analysis is carried out the nonlinear transient heat flow analysis and verified against the experimental data. The complex features of behavior in fire conditions, such as thermal expansion, plasticity, cracking or crushing, and material properties changing with temperature are considered. By the use of analytical model, the concrete tunnel subjected to fire loads were analyzed and discussed. With comparison of current concrete materials and FR-ECC, the experimental and analytical results of FR-ECC shows the better fire resistance performance than the other.

A Study on the Properties of SM 400 for Evaluation of Structural Stability at High Temperature (고온 시의 구조내력 평가를 위한 SM 400강재의 고온 특성 평가 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.7-12
    • /
    • 2013
  • Recently, the risk of fire outbreak is going up because of newly developed combustible materials are intended to apply more. Especially the steel framed structure can lose its load-bearing capacity when it is exposed to higher temperature condition such as a fire. So the pre-evaluation of fire resistance of the structure is very essential that the mechanical properties of yield strength and elastic modulus and thermal properties such as conductivity and linear expansion be required. To get the databases for SM 400 or welding structural steels at high temperature, various temperature conditions were used for deriving the yield strength, elastic modulus, linear expansion, and conductivity and the results were compared to those of SS 400, ordinary structural steel, respectively.

An Experimental Study on the Evaluation of Mechanical Properties of CFT Column by Unstressed Test and Stub Specimen (비재하 가열시험 및 Stub 시험체를 활용한 CFT기둥의 역학적 특성평가에 관한 실험적 연구)

  • Lee, Dae-Hee;Lee, Tae-Gyu;Lee, Eui-Bae;Kim, Young-Sun;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.209-213
    • /
    • 2008
  • Recently, it increases in use of CFT(Concrete filled steel tube, below CFT) because material and method are required to be diversification and High-Performance according to increase the super-high structure. But, CFT column lose bearing capacity under fire because steel tube is exposed to outside. As a result, structure is collapsed and then it cause much damage. In case of the Europe, Japan and America, they have studied the fire-resistance performance of CFT under fire for a long time. However, it would have hardly studied it in domestic because it is much difficulty about experiment machine and cost. So it is needed base on fire-resist performance of CFT under fire. Therefore, this study dynamic specificity of stub column which made tester of stub column based on facts of strength and mixing fiber evaluated used heating and load testing machine. As a result, it is willing to propose fundamental data for quick and accurate diagnosis of deteriorated concrete structure by fire damage with experiment according to the design high strength concrete.

  • PDF

Mechanical Properties & Ablation Mechanism of SiC Coated Carbon/Carbon Composite by Pack-cementation Method

  • Kim, J.I.;Oh, I.S.;Joo, H.J.
    • Carbon letters
    • /
    • v.2 no.1
    • /
    • pp.27-36
    • /
    • 2001
  • The pack-cementation process is the method which is formed SiC coating layer to improve weak oxidation properties of CFRCs (carbon fiber-reinforced carbons). This method develops the anti-oxidation coating layer having no dimensional changes and good wetting properties. In this study to improve the oxidative resistance of the prepared 4D CFRCs, the surface of CFRCs is coated by SiC using pack cementation method. The mechanical properties of SiC-coated 4D CFRCs are measured by the 3-point bending test, and their ablation properties are investigated by the arc torch plasma test. From the results, it is found that both mechanical and ablation properties of SiC-coated 4D CFRCs are much better than bare CFRCs.

  • PDF

An Analytical Study on Prediction Fire Resistance of CFT Column in ISO Fire (표준화재조건 CFT기둥 내화성능예측을 위한 해석적 연구)

  • Kim, Hyung-Jun;Kim, Heun-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.257-260
    • /
    • 2008
  • The heat resistance of steel materials tends to weaken due to its high heat transfer properties, which might result in deteriorated strength because of rapidly rising temperature on surface in a fire. Particularly in case of CFT column that bears tensile stress of the structure on its external steel members, a numerical analysis on deterioration of strength and variation of stress shall be first carried out to ensure the structure will have sufficient fire resistance. In the study, based on values obtained from the high temperature material property test of steel materials and concrete, the test to forecast the fire behavior of CFT column was conducted using a finite element analysis method (ABAQUS). An Analysis in a bid to predict the heat transfer and the behavior characteristics by varying the strength of the concrete filled to the range of 40MPA and 50MPA was carried out. As a result of analysis of CFT column on condition of 180-minute exposure under the standard fire condition, 123mm of strain appeared with 40MPA model, while 91mm contraction with 50MPA model.

  • PDF

A Study on the Insulation and Electrical Degradation Properties of Heat Resistance Epoxy Powder for Busduct (부스닥트용 내열성 에폭시 분체도료의 절연 및 열화 특성 연구)

  • Kang, Cheolhwa;Park, Ji-Koon;Park, Jong-Kyu;Ju, Hyun-Don;Kim, Hyun-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.9
    • /
    • pp.662-668
    • /
    • 2013
  • Reported here are results of the mechanical and electrical properties of both of intact and thermally degraded epoxy-coated copper busducts that are made by fluidized bed process. To elucidate and compare the properties mentioned above, electrical breakdown by thermal and water aging, v-t characteristic, bending test, impact test and cross cut test are carried out. Although the performance of electrical and mechanical properties are gradually decreased in increasing the severe conditions such as temperature, aging time, and so forth, sample C has a better performance in both mechanical and electrical properties.