• Title/Summary/Keyword: Fire monitoring system

Search Result 264, Processing Time 0.023 seconds

A Study on Customized Smart Fire and Security System for one person household (1인 가구를 위한 맞춤형 스마트 화재 및 방범 시스템에 대한 연구)

  • Han, Hoonyoung;Kim, Gyunho;Ju, Minsu;Ko, Dongbeom;Kim, Jungjoon;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.295-304
    • /
    • 2019
  • This paper introduces a customized Smart Fire and Crime system for one person households. Recently, the number of one person household has skyrocketed due to the increasing number of one person household and the aging population. As a result, the demand for private security companies for one person household is increasing and smart security systems that are applied with rapidly evolving IoT and sensor technologies are also becoming a major issue. However, despite the increasing trend of one person households, the existing system focuses on multiple households, so that there are disadvantages of the one person households to operate in such a big system which operate separately. Therefore, in this paper, we design and implement a system that provides a personalized safety service for one person household that integrates a security system and a fire monitoring system. This will help prevent criminal activity in places where the police can not reach at a lower cost than using existing private companies, and help monitor the situation of the houses in real time.

A Study on Development of App-Based Electric Fire Prediction System (앱기반 전기화재 예측시스템 개발에 관한 연구)

  • Choi, Young-Kwan;Kim, Eung-Kwon
    • Journal of Internet Computing and Services
    • /
    • v.14 no.4
    • /
    • pp.85-90
    • /
    • 2013
  • Currently, the electric fire prediction system uses PIC(Peripheral Interface Controller) for controller microprocessor. PIC has a slower computing speed than DSP does, so its real-time computing ability is inadequate. So with the basic characteristics waveform during arc generation as the standard reference, the comparison to this reference is used to predict and alarm electric fire from arc. While such alarm can be detected and taken care of from a remote central server, that prediction error rate is high and remote control in mobile environment is not available. In this article, the arc detection of time domain and frequency domain and wavelet-based adaptation algorithm executing the adaptation algorithm in conversion domain were applied to develop an electric fire prediction system loaded with new real-time arc detection algorithm using DSP. Also, remote control was made available through iPhone environment-based app development which enabled remote monitoring for arc's electric signal and power quality, and its utility was verified.

Discriminant analysis to detect fire blight infection on pear trees using RGB imagery obtained by a rotary wing drone

  • Kim, Hyun-Jung;Noh, Hyun-Kwon;Kang, Tae-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.2
    • /
    • pp.349-360
    • /
    • 2020
  • Fire-blight disease is a kind of contagious disease affecting apples, pears, and some other members of the family Rosaceae. Due to its extremely strong infectivity, once an orchard is confirmed to be infected, all of the orchards located within 100 m must be buried under the ground, and the sites are prohibited to cultivate any fruit trees for 5 years. In South Korea, fire-blight was confirmed for the first time in the Ansung area in 2015, and the infection is still being identified every year. Traditional approaches to detect fire-blight are expensive and require much time, additionally, also the inspectors have the potential to transmit the pathogen, Thus, it is necessary to develop a remote, unmanned monitoring system for fire-blight to prevent the spread of the disease. This study was conducted to detect fire-blight on pear trees using discriminant analysis with color information collected from a rotary-wing drone. The images of the infected trees were obtained at a pear orchard in Cheonan using an RGB camera attached to a rotary-wing drone at an altitude of 4 m, and also using a smart phone RGB camera on the ground. RGB and Lab color spaces and discriminant analysis were used to develop the image processing algorithm. As a result, the proposed method had an accuracy of approximately 75% although the system still requires many flaws to be improved.

Study on the Safety Standard Establishment of Halogen Clean Extinguishing Agents (할로겐화합물청정소화약제 안전기준 설정에 관한 연구)

  • Cho, Jung-Rae;Lee, Jong-Ho
    • Fire Science and Engineering
    • /
    • v.32 no.5
    • /
    • pp.22-33
    • /
    • 2018
  • The amount of halogen clean fire extinguishing agents has been increased by the excellent features of extinguishing, adaptability and no residue. On the other hand in situations without a hazard assessment and safety standard of agents, chemical accidents by the agents occurs frequently. This study was performed to propose the halogen clean agents' regulatory exposure limit and safety standard including the quantitative ventilation system with gas leak monitoring, hazard recognition and optimal personal protection selection through a literature review and experimental research.

Implementation of Real-time Sensor Monitoring System on Zigbee Module (Zigbee 모듈을 이용한 실시간 센서 모니터링 시스템 구현)

  • Kim, Gwang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.312-318
    • /
    • 2011
  • USN technology will be applied to various fields such as logistics, transportation, government, health, welfare and environment and will be settled down by basic infrastructure of a future society. In this study, we analyzed sensor networks structure based on IEEE 802.15.4 and implemented the sensor monitoring system using Zigbee modules. For implementation of real-time sensor monitoring system, we designed Linux-based development environment and the sensor-specific component. The result of this paper may be utilized in such areas lighting system, intrusion detection, fire detection, detection and notification of abnormal conditions.

Analysis of Vision based Technology for Smart Railway Station System (스마트 철도역사시스템 구축을 위한 영상기반 기술 분석)

  • Lee, Sang-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1065-1070
    • /
    • 2018
  • These days there are many researches on the vision based technology using deep learning. The lots of studies on the intelligent operation and maintenance for railway station system used technologies with vision analysis function. This paper analyzes the papers which studied the intelligent station system with vision analysis function for passengers and facilities monitoring, platform monitoring, fire monitoring, and effective operation and design. Also, this paper proposes research which uses the more powerful vision technology with deep-learning for smart railway station system.

A Study on The Industrial Complex Disaster Surveillance and Monitoring System Using Drones (드론을 활용한 산업단지 재난감시 및 모니터링 시스템에 관한 연구)

  • Su-Ji Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.233-240
    • /
    • 2024
  • In this study, we introduce a system for real-time monitoring of field conditions within an industrial complex using a 5G network UAV (: Unmanned Aerial Vehicle). When a monitoring event occurs in a sensor mounted on a UAV (detection of fire, harmful gas, or industrial disaster type human accident), key information from the sensor is transmitted to the UAS (: Unmanned Aerial System) application server. As a result of this information transmission and processing, managers or operators of the Industrial Complex Corporation were able to secure legal basis data for fatal accidents, fires, and detection of harmful gases at sites within the Industrial Complex Corporation through trigger processing for each accident risk situation.

An Analysis on the Deployment Methods for Smart Monitoring Systems (스마트 모니터링 시스템의 배치 방식 분석)

  • Heo, No-Jeong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.55-62
    • /
    • 2010
  • Monitoring systems are able to report certain events at region of interest(ROI) and to take an appropriate action. From industrial product line full of robots to fire detection, intrusion detection, smart grid application, environmental pollution alarm system, monitoring system has widely used in diverse industry sector. Recently, due to advance of wireless communication technology and availability of low cost sensors, intelligent and/or smart monitoring systems such as sensor networks has been developed. Several deployment methods are introduced to meet various monitoring needs and deployment performance criteria are also summarized to be used to identify weak point and be useful at designing monitoring systems. Both efficiency during deployment and usefulness after the deployment should be assessed. Efficiency factors during deployment are elapsed time, energy required, deployment cost, safety, sensor node failure rate, scalability. Usefulness factors after deployment are ROI coverage, connectivity, uniformity, target density similarity, energy consumption rate per unit time and so on.

Development of a Single Fire Alarm System of House Based on Wireless Communication (무선 감응식 주택 단독 화재 경보 시스템 개발)

  • Park, Hyeon-Ho;Cho, Seong-Jin;Park, Byeong-Hwa;Heo, Jeong-Hun;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.1017-1022
    • /
    • 2018
  • In this paper, a single house fire alarm device, which can solve the problem of fire perception at midnight time and the attenuation of alarm signal due to the wall between rooms based on the wireless communication, was developed. The radio controlled fire alarm device was designed to allow fire to be recognized quickly and accurately by monitoring the temperature and $CO_2$ concentration based on the temperature sensor and gas sensor, by detecting the fire in the house and by transmitting the fire alarm to the individual wireless alarms of other rooms using the wireless transmission/reception module. Using the Arduino as a main control device, three independent fire alarm device prototypes were made, and their usefulness was verified by the correct operations in temperature and gas tests.

A Study of Detecting Broken Rail using the Real-time Monitoring System (실시간 모니터링을 통한 레일절손 검지에 관한 연구)

  • Kim, Tae Geon;Eom, Beom Gyu;Lee, Hi Sung
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.4
    • /
    • pp.1-7
    • /
    • 2013
  • Train accidents can be directly connected to fatal accidents-collision, derailment, Fire, railway crossing accidents-resulting in tremendous human casualties. First of all, the railway derailment is not only related to most of railway accidents but also it can lead to much more catastrophic accompanying train overtured than other factors. Therefore, it is most important factor to ensure railway safety. some foreign countries have applied to the detector machines(e.g., ultrasonic detector car, sleep mode, current detector, optical sensing, optical fiber). Since it was developed in order to prevent train from being derailed. In korea, the existing track method has been used to monitor rail condition using track circuit. However, we found out it impossible for Communication Based Train Control system(CBTC), recent technology to detect rail condition using balise(data transmission devices) without no track circuit. For this reason, it is needed instantly to develop real-time monitoring system used to detect broken rails. Firstly, this paper presents domestic and international statues analysis of rail breaks technology. Secondly, the composition and the characteristics of the real-time monitoring system. Finally, the evidence that this system could assumed the location and type of broken rails was proved by the experiment of prototype and operation line tests. We concluded that this system can detect rail break section in which error span exist within${\pm}1m$.