• 제목/요약/키워드: Fire image detection

검색결과 132건 처리시간 0.023초

영상 처리 기법을 이용한 터널 내 화재의 조기 탐지 기법의 개발 (Development of Early Tunnel Fire Detection algorithm Using the Image Processing)

  • 이병무;한동일
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2006년도 가을 학술발표논문집 Vol.33 No.2 (B)
    • /
    • pp.499-504
    • /
    • 2006
  • 터널 내 화재 발생 시 대규모의 인명, 재산 피해가 발생하는데 이러한 상황을 조기에 탐지함으로써 피해를 최소화하기 위한 시스템이 필요하다. 또한 터널 내 설치된 CCTV를 사람이 24시간 감시하기에는 너무 어려운 점이 많다. 이에 따라 적절한 영상 처리를 통한 화염 및 연기 검출 시스템을 통해 경보를 알려줄 경우, 보다 편리하고 사람이 모니터 앞에 없을 때 화재 발생 시 화재를 검출할 수 있어 피해를 최소화 할 수 있다. 본 논문에서는 영상처리 기법을 이용하여 터널 안에서 발생한 화재 및 연기를 고속으로 탐지하기 위한 알고리즘을 제안하였다. 터널 안에서의 화재 탐지는 차량 조명 및 터널내의 조명등과 같은 여러 가지 상황에 의해 산불 탐지 알고리즘과 다른 독자적인 알고리즘의 개발이 요구된다. 본 논문에서 제시한 두 가지 알고리즘은 기존 알고리즘보다 정확한 위치 탐지와 초기 단계에서의 탐지가 가능하도록 되었다. 또한 우리는 실험 결과를 통해 각각의 성능을 비교함으로써 제시한 알고리즘의 타당성을 보여주었다.

  • PDF

다기능 레이다 시스템에서 TaP(Time and Priority) 알고리즘을 이용한 빔 스케줄링 방안 및 Task 설계방법 (Beam Scheduling and Task Design Method using TaP Algorithm at Multifunction Radar System)

  • 조인철;현준석;유동길;손성환;조원민;송준호
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권1호
    • /
    • pp.61-68
    • /
    • 2021
  • 과거의 레이다는 임무 특성에 맞게 사격통제레이다, 탐지레이다, 추적레이다, 영상획득 레이다 등으로 구분되어 운영해왔다. 하지만 다기능 레이다는 표적 탐지, 추적, 피아식별, 재머 탐지 및 대응 등 단일 시스템 안에서 다양한 임무를 수행한다. 때문에 한정된 자원으로 다기능 레이다를 운용하기 위한 효율적인 자원관리는 필수적이다. 특히 탐지된 표적의 추적을 위한 표적 위협도와 이를 바탕으로 추적주기를 선정하는 방법은 중요한 이슈다. 위협표적을 집중으로 추적하다보면 다른 영역에서 탐지된 표적을 효율적으로 관리할 수 없고 탐지에 집중을 하면 추적성능이 저하될 수 있다. 때문에 효과적인 스케줄링이 필수적이다. 본 논문에서는 다기능 레이다 스케줄링 방안인 TaP(Time and Priority)알고리즘과 이를 구성하기 위한 소프트웨어적 설계 방법에 대해 제안한다.

향상된 표적 추적 기법을 이용한 무유도 대전차 로켓의 조준 오차 제거 방법 (A Method for Eliminating Aiming Error of Unguided Anti-Tank Rocket Using Improved Target Tracking)

  • 송진모;김태완;박태선;도주철;배종수
    • 한국군사과학기술학회지
    • /
    • 제21권1호
    • /
    • pp.47-60
    • /
    • 2018
  • In this paper, we proposed a method for eliminating aiming error of unguided anti-tank rocket using improved target tracking. Since predicted fire is necessary to hit moving targets with unguided rockets, a method was proposed to estimate the position and velocity of target using fire control system. However, such a method has a problem that the hit rate may be lowered due to the aiming error of the shooter. In order to solve this problem, we used an image-based target tracking method to correct error caused by the shooter. We also proposed a robust tracking method based on TLD(Tracking Learning Detection) considering characteristics of the FCS(Fire Control System) devices. To verify the performance of our proposed algorithm, we measured the target velocity using GPS and compared it with our estimation. It is proved that our method is robust to shooter's aiming error.

Histogram Matching of Sentinel-2 Spectral Information to Enhance Planetscope Imagery for Effective Wildfire Damage Assessment

  • Kim, Minho;Jung, Minyoung;Kim, Yongil
    • 대한원격탐사학회지
    • /
    • 제35권4호
    • /
    • pp.517-534
    • /
    • 2019
  • In abrupt fire disturbances, high quality images suitable for wildfire damage assessment can be difficult to acquire. Quantifying wildfire burn area and severity are essential measures for quick short-term disaster response and efficient long-term disaster restoration. Planetscope (PS) imagery offers 3 m spatial and daily temporal resolution, which can overcome the spatio-temporal resolution tradeoff of conventional satellites, albeit at the cost of spectral resolution. This study investigated the potential of augmenting PS imagery by integrating the spectral information from Sentinel-2 (S2) differenced Normalized Burn Ratio (dNBR) to PS differenced Normalized Difference Vegetation Index (dNDVI) using histogram matching,specifically for wildfire burn area and severity assessment of the Okgye wildfire which occurred on April 4th, 2019. Due to the difficulty in acquiring reference data, the results of the study were compared to the wildfire burn area reported by Ministry of the Interior and Safety. The burn area estimates from this study demonstrated that the histogram-matched (HM) PS dNDVI image produced more accurate burn area estimates and more descriptive burn severity intervals in contrast to conventional methods using S2. The HM PS dNDVI image returned an error of only 0.691% whereas the S2 dNDVI and dNBR images overestimated the wildfire burn area by 5.32% and 106%, respectively. These improvements using PS were largely due to the higher spatial resolution, allowing for the detection of sparsely distributed patches of land and narrow roads, which were indistinguishable using S2 dNBR. In addition, the integration of spectral information from S2 in the PS image resolved saturation effects in areas of low and high burn severity.

A model to secure storage space for CCTV video files using YOLO v3

  • Seong-Ik, Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권1호
    • /
    • pp.65-70
    • /
    • 2023
  • 본 논문에서는 YOLO v3를 이용한 CCTV 저장공간 확보 모델을 제안한다. CCTV는 방범, 화재예방, 감시 등 재난·재해 및 안전을 위해 사회 곳곳에 설치·운영되며, 개수의 증가와 화질의 개선이 함께 이뤄지고 있다. 이로 인해 영상파일의 개수와 크기가 증가하면서 기존의 저장공간으로는 이를 감당하기 어려움을 느끼고 있다. 이를 해소하기 위해 CCTV 영상 속의 특정 객체를 YOLO v3를 이용하여 탐지하여 해당 프레임만을 저장하여 불필요한 프레임을 삭제하는 모델을 제안하여 영상파일의 크기를 줄임으로써 저장공간을 확보하고, 그로 인해 더 오랜 기간 영상을 저장·관리할 수 있도록 하였다. 제안 모델 적용 후 평균 94.9% 영상파일의 크기가 절감됨을 확인하였으며, 제안 모델을 적용하기 전보다 약 20배의 보관 기간이 증가했음을 확인할 수 있었다.

자율운항선박의 원격검사를 위한 영상처리 기반의 아날로그 게이지 지시바늘 객체의 식별 (Identifying Analog Gauge Needle Objects Based on Image Processing for a Remote Survey of Maritime Autonomous Surface Ships)

  • 이현우;임정빈
    • 한국항해항만학회지
    • /
    • 제47권6호
    • /
    • pp.410-418
    • /
    • 2023
  • 최근 자율운항선박 관련 연구개발과 상용화가 급속하게 진행됨과 동시에 자율운항선박의 감항성 확보를 위하여 선박에 설치된 각종 장비 상태를 원격지에서 검사할 수 있는 방법 역시 연구되고 있다. 특히, 각종 장비에 부착된 아날로그 게이지의 값을 영상처리를 통해 획득할 수 있는 방법이 주요 이슈로 부각되고 있는데, 그 이유는 영상처리 기법을 이용하면 이미 설치되었거나 또는 설치 예정인 다수의 장비를 변형 또는 변경하지 않고 비접촉식으로 게이지의 값을 검출할 수 있어서 장비의 변형 또는 변경에 따른 선급의 형식승인 등이 필요하지 않은 장점이 있기 때문이다. 본 연구의 목적은 잡음이 포함된 아날로그 게이지의 영상 중에서 동적으로 변하는 지시바늘의 객체를 식별하는데 있다. 지시바늘 객체의 위치는 정확한 게이지 값의 판독에 영향을 미치는데, 게이지 값을 정확하게 판독하기 위해서는 우선하여 지시바늘 객체의 식별이 중요하다. 지시바늘 객체의 식별 작업을 위한 영상은 비상소화펌프 모형에 부착한 수압 측정용 아날로그 게이지를 이용하여 획득하였다. 획득한 영상은 가우시안 필터와 임계처리 그리고 모폴로지 연산 등을 통해서 사전처리한 후, 허프 변환을 통해서 지시바늘의 객체를 식별하였다. 실험결과, 잡음이 포함된 아날로그 게이지의 영상에서 지시바늘의 중심과 객체가 식별됨을 확인하였고, 그 결과 본 연구에 적용한 영상처리 방법이 선박에 장착된 아날로그 게이지의 객체 식별에 적용될 수 있음을 알았다. 본 연구는 자율운항선박의 원격검사를 위한 하나의 영상처리 방법으로 적용될 것으로 기대된다.

터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과 (Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection)

  • 이규범;신휴성
    • 한국터널지하공간학회 논문집
    • /
    • 제21권3호
    • /
    • pp.419-432
    • /
    • 2019
  • 대부분 딥러닝 모델의 학습은 입력값과 입력값에 따른 출력값이 포함된 레이블링 데이터(labeling data)를 학습하는 지도 학습(supervised learning)으로 진행된다. 레이블링 데이터는 인간이 직접 제작하므로 데이터의 정확도가 높다는 장점이 있지만 비용과 시간의 문제로 인해 데이터의 확보에 많은 노력이 소요된다. 그리고 지도 학습의 목표는 정탐지 데이터(true positive data)의 인식 성능 향상에 초점이 맞추어져 있으며, 오탐지 데이터(false positive data)의 발생에 대한 대처는 미흡한 실정이다. 본 논문은 터널 관제센터에 투입된 딥러닝 모델 기반 영상유고 시스템의 모니터링을 통해 정탐지와 레이블링 데이터의 학습으로 예측하기 힘든 오탐지의 발생을 확인하였다. 오탐지의 유형은 작업차량의 경광등, 터널 입구부에서 반사되는 햇빛, 차선과 차량의 일부에서 발생하는 길쭉한 검은 음영 등이 화재와 보행자로 오탐지되고 있었다. 이러한 문제를 해결하기 위해 현장에서 발생한 오탐지 데이터와 레이블링 데이터를 동시에 학습하여 딥러닝 모델을 개발하였으며, 그 결과 기존 레이블링 데이터만 학습한 모델과 비교하면 레이블링 데이터에 대한 재추론 성능이 향상됨을 알 수 있었다. 그리고 오탐지 데이터에 대한 재추론을 한 결과 오탐지 데이터를 많이 포함하여 학습한 모델일 경우 보행자의 오탐지 개수가 훨씬 줄었으며, 오탐지 데이터의 학습을 통해 딥러닝 모델의 현장 적용성을 향상시킬 수 있었다.

RGB-D 정보를 이용한 2차원 키포인트 탐지 기반 3차원 인간 자세 추정 방법 (A Method for 3D Human Pose Estimation based on 2D Keypoint Detection using RGB-D information)

  • 박서희;지명근;전준철
    • 인터넷정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.41-51
    • /
    • 2018
  • 최근 영상 감시 분야에서는 지능형 영상 감시 시스템에 딥 러닝 기반 학습 방법이 적용되어 범죄, 화재, 이상 현상과 같은 다양한 이벤트들을 강건하게 탐지 할 수 있게 되었다. 그러나 3차원 실세계를 2차원 영상으로 투영시키면서 발생하는 3차원 정보의 손실로 인하여 폐색 문제가 발생하기 때문에 올바르게 객체를 탐지하고, 자세를 추정하기 위해서는 폐색 문제를 고려하는 것이 필요하다. 따라서 본 연구에서는 기존 RGB 정보에 깊이 정보를 추가하여 객체 탐지 과정에서 나타나는 폐색 문제를 해결하여 움직이는 객체를 탐지하고, 탐지된 영역에서 컨볼루션 신경망을 이용하여 인간의 관절 부위인 14개의 키포인트의 위치를 예측한다. 그 다음 자세 추정 과정에서 발생하는 자가 폐색 문제를 해결하기 위하여 2차원 키포인트 예측 결과와 심층 신경망을 이용하여 자세 추정의 범위를 3차원 공간상으로 확장함으로써 3차원 인간 자세 추정 방법을 설명한다. 향후, 본 연구의 2차원 및 3차원 자세 추정 결과는 인간 행위 인식을 위한 용이한 데이터로 사용되어 산업 기술 발달에 기여 할 수 있다.

재난 현장 물리적 보안을 위한 딥러닝 기반 요구조자 탐지 알고리즘 (Deep Learning Based Rescue Requesters Detection Algorithm for Physical Security in Disaster Sites)

  • 김다현;박만복;안준호
    • 인터넷정보학회논문지
    • /
    • 제23권4호
    • /
    • pp.57-64
    • /
    • 2022
  • 화재, 붕괴, 자연재해 등의 재난 발생으로 건물 내부가 붕괴하는 경우, 기존의 건물 내부의 물리적 보안이 무력해질 확률이 높다. 이때, 붕괴 건물 내의 인명피해와 물적 피해를 최소화하기 위한 물리적 보안이 필요하다. 따라서 본 논문은 기존 연구되었던 장애물을 탐지하고 건물 내 붕괴된 지역을 탐지하는 연구와 인명피해를 최소화하기 위한 딥러닝 기반 객체 탐지 알고리즘을 융합하여 재난 상황의 피해를 최소화하기 위한 알고리즘을 제안한다. 기존 연구에서 단일 카메라만을 활용하여 현재 로봇이 있는 복도 환경의 붕괴 여부를 판단하고 구조 및 수색 작업에 방해가 되는 장애물을 탐지했다. 이때, 붕괴 건물 내 물체는 건물의 잔해나 붕괴로 인해 비정형의 형태를 가지며 이를 장애물로 분류하여 탐지하였다. 또한, 재난 상황에서 자원 중 가장 중요한 요구조자를 탐지하고 인적 피해를 최소화하기 위한 방법을 제안하고 있다. 이를 위해, 본 연구는 공개된 재난 영상과 재난 상황의 이미지 데이터를 수집하여 다양한 딥러닝 기반 객체 탐지 알고리즘을 통해 재난 상황에서 요구조자를 탐지하는 정확도를 구했다. 본 연구에서 재난 상황에 요구조자를 탐지하는 알고리즘을 분석한 결과 YOLOv4 알고리즘의 정확도가 0.94로 실제 재난 상황에서 활용하기 가장 적합하다는 것을 증명하였다. 본 논문을 통해 재난 상황의 효율적인 수색과 구조에 도움을 주며 붕괴된 건물 내에서도 높은 수준의 물리적 보안을 이룰 수 있을 것이다.

분광정합 및 혼합 분석 방법을 활용한 위험·유해물질 스티렌 탐지 (Hazardous and Noxious Substances (HNSs) Styrene Detection Using Spectral Matching and Mixture Analysis Methods)

  • 박재진;박경애;김태성;이문진
    • 해양환경안전학회지
    • /
    • 제28권spc호
    • /
    • pp.1-10
    • /
    • 2022
  • 국내외 해상 위험·유해물질(Hazardous and Noxious Substances, HNS) 물동량이 증가함에 따라 HNS 유출 사고의 위험성이 점차 높아지고 있다. 해상에 유출된 HNS는 해양생태계 파괴를 비롯한 해양환경 오염 및 인명피해를 유발하며, 화재 및 폭발 등을 동반한 2차 사고 발생 가능성도 존재한다. 따라서 해상 HNS의 신속한 탐지와 각 물질 특성에 적합한 방제전략을 수립해야 한다. 본 연구에서는 초분광 원격탐사에 기반한 지상 HNS 유출 실험 과정 및 탐지 알고리즘 적용 결과를 제시하고자 한다. 이를 위해 프랑스 브레스트 지역의 야외 풀장에서 스티렌을 유출한 후 초분광 센서를 활용한 동시 관측을 수행하였다. 순수 스티렌 및 해수 스펙트럼은 주성분 분석(principal component analysis, PCA) 및 N-Findr 기법을 적용하여 추출하였으며, 또한 spectral distance similarity (SDS), spectral correlation similarity (SCS), spectral similarity value (SSV), spectral angle mapper (SAM)을 포함한 분광정합 기법을 적용하여 초분광 영상 내 화소들을 스티렌 및 해수로 분류하였다. 그 결과 SDS 및 SSV 기법이 우수한 스티렌 탐지 결과를 보여주었으며, 스티렌 총 면적은 약 1.03 m2로 추정되었다. 본 연구는 해상 HNS 모니터링에 주요 역할을 할 것으로 기대된다.