• Title/Summary/Keyword: Fire ignition

Search Result 522, Processing Time 0.025 seconds

Flame Spreading Over Metal Dust Deposits With Particles Size (입경 변화에 따른 퇴적금속 분체층의 화염전파)

  • Han, Ou Sup;Choi, Yi Rac;Han, In Soo;Lee, Jung Suk
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.603-608
    • /
    • 2010
  • A study has been conducted experimentally to investigate behavior of ignition and flame spread over metal dust deposits with particle size using by a developed apparatus and thermogravimetric analysis(TGA). Zr, Ta and Mg-Al(90:10 wt%) alloy metal powders including Mg and Ti with different particle size were used. Also we used PMMA(Polymethylmethacrylate) powder to compare the combustion properties to those of metal powders. When dust layers were more than 5 mm in thickness, the dependency of deposit depth on flame spread rate over dust layer was not shown. With decreasing mean particle diameter, flame spread rate over Ti dust layer decreased, while the spread rate over Mg dust layer increased. For mean diameter of $51{\mu}m$, fire spread rate over pure Mg dust layer decreased to about 50 percent in Mg-Al(90:10 wt%) dust layer. The oxide thickness of metal dust used in this study tended to be inversely proportional with the spread rate, and it was quite small for influence with particle size. From the results of TGA for Ti and Mg, weight increasing curves(550 for Mg, 578 for Ta) were observed in the oxidation process, and they seems to be caused by ignition of upper dust layer.

Recent Epidemiologic Features of Carbon Monoxide Poisoning in Korea: A Single Center Retrospective Cohort Study (최근 국내 일산화탄소 중독의 역학적 특징: 일개 응급의료센터의 후향적 코호트 연구)

  • Choi, Byung Ho;Jeon, Jin;Ryoo, Seung Mok;Seo, Dong Woo;Kim, Won Young;Oh, Bum Jin;Lim, Kyoung Soo;Sohn, Chang Hwa
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.10 no.2
    • /
    • pp.80-85
    • /
    • 2012
  • Purpose: The aim of this study was to describe the epidemiologic characteristics of adult patients with carbon monoxide poisoning who presented to the emergency department in recent years. Methods: This was a retrospective cohort study on adult consecutive patients with carbon monoxide (CO) poisoning who presented to the emergency department of a tertiary care university-affiliated hospital from January 1, 2008 to December 31, 2011. Results: A total of 91 patients were included in this study; there were 56(61.5%) unintentional and 35(38.5%) intentional poisonings. For the unintentional CO poisonings, the principal sources of exposure to CO were fire (39.3%), charcoal (17.9%), briquette charcoal (7.1%), wood burning boiler (7.1%), gas boiler (5.4%), automobile heater (3.6%), briquette boiler (3.6%), firewood (3.6%), and other items (12.5%). For the intentional CO poisonings, the sources were ignition charcoal (60.0%), briquette (31.4%), charcoal (5.7%) and butane gas (2.9%). For the unintentional CO poisonings, the places of poisoning were the home (58.9%), workplace (10.7%), public accommodation (8.9%), tent (8.9%), automobile (3.6%) and parking place (1.8%). For the intentional CO poisonings, the places of poisoning were the home (77.1%), public accommodation (11.4%) and automobile (11.4%). The proportion of intentional CO poisonings among total poisonings has increased significantly in recent years; 0.0% in 2008, 3.3% in 2009, 5.5% in 2010, and 29.7% in 2011. Conclusion: This study showed that in recent years in Korea, the source of CO has diversified broadly and intentional CO poisonings from burning ignition charcoal or briquettes has increased. Prevention efforts should consider these factors.

  • PDF

Study for Failure Cases on Engine Electronic Control Computer in Liquid Petroleum Gas vehicle (액화석유가스 자동차 엔진의 전자제어 컴퓨터의 고장사례 연구)

  • Lee, Il-Kwon;Kim, Young-Gyu;Kook, Chang-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.6
    • /
    • pp.28-33
    • /
    • 2011
  • The purpose of this paper analyzes and studies to improve the failure cases on the computer that one of electronic control elements for engine in liquified petroleum gas vehicle. The first case, it certified the non-starting phenomenon of engine that it's electronic control unit didn't control the fuel for idle speed actuator because of no given action signal in slow-cut solenoid valve. The second case, it knew the bad condition phenomenon of engine and back-fire by the wire melting of ignition coil and firing of transistor being inside ECU. The third case, it certified the action stoping phenomenon of engine and malfunctioning signal for engine ECU because of leakage of current and an excess current by moisture inflowing inside ECU curcuit plate. Therefore, it is thought that will elevate the durability and reliability of engine computer throughout procure of quality.

Quantitative Risk Assessment for Gas-explosion at Buried Common Utility Tunnel (지하 매설 공동구 내부 가스 폭발에 대한 위험성 평가)

  • Jang, Yuri;Jung, Seungho
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.89-95
    • /
    • 2016
  • Keeping the gas pipelines in the common utility tunnel is useful because it has a lower risk of corrosion than conventional burial, and can prevent from excavating construction. But, explosions in common utility tunnels can cause greater damage from the blast overpressure compared to outdoor explosions, due to nature of the confined environment. Despite this fact, however, research on common utility tunnels has been limited to fire hazard and little has been studied on the dangers of explosions. This study developed scenarios of methane gas explosion caused by gas leak from gas piping within the common utility tunnel followed by unknown ignition; the study then calculated the extent of the impact of the explosion on the facilities above, and suggested the needs for designing additional safety measures. Two scenarios were selected per operating condition of safety devices and the consequence analysis was carried out with FLACS, one of the CFD tools for explosion simulation. The overpressures for all scenarios are substantial enough to completely destroy most of the buildings. In addition, we have provided additional measures to secure safety especially reducing incident frequency.

Research on the Ejection Gas Generator to Improve Ejecting Performance (사출성능 개선을 위한 사출용 가스발생기 연구)

  • Oh, Seok-Jin;Jang, Seung-Gyo;Cha, Hong-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.5
    • /
    • pp.383-390
    • /
    • 2013
  • The reduction of the maximum acceleration which causes shock for a missile is very important to prevent abnormal operation of a missile and decrease size and cost of missile components. Because the maximum acceleration created by operation of an ejection gas generator occurs in the initial ejection stage, the design parameters which affect initial ejection stage were examined. The igniter and the nozzle closure were selected as design parameters of a gas generator. The maximum acceleration created by the gas generator was examined experimentally by changing of the design parameters. Finally the reduction effect of the maximum acceleration was compared quantitatively by static fire test of a gas generator. The maximum acceleration of the best model which was applied to each optimal design parameter was about 68% reduced than that of the reference model.

A Trends Analysis on Safety for CNG/HCNG Complex Fueling Station (CNG/HCNG 복합충전소의 안전에 관한 동향분석)

  • Lee, Seung-Hyun;Kang, Seung-Kyu;Sung, Jong-Gyu;Lee, Young-Soon
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • In this research, the safety trends and technologies of HCNG, a mixture of hydrogen and natural gas, are analyzed. This is an attracting alternative fuels to meet the strengthened automotive exhaust gas emission standards. HCNG is very important opportunities and challenges in that it is available the existing CNG infrastructures, meets the strengthened emission standards, and the technical, social bridge of the coming era of hydrogen. It is essential for the commercialization of HCNG that hydrogen - compressed natural gas blended fuel for use in preparation of various safety considerations included accidents scenario, safety distance, hydrogen attack, ignition sources and fire detectors are examined. Risk assessments also are suggested as one of permission procedure for HCNG filling station.

Development of Arc-Fault Detection Technique (아크고장 검출기술의 개발)

  • Lim, Young-Bae;Jeon, Jeong-Chay;Park, Chan-Eom;Bae, Seok-Myeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1810-1816
    • /
    • 2009
  • In 2007, 9,128 fires were actually caused by electrical faults and these fires resulted in 29 deaths and 262 injuries. Arc-faults were one of the major causes of these fires. When an unintended arc-fault occurs, it generates intense heat that can easily ignite surrounding combustibles. But, because conventional circuit breakers only respond to overloads, short circuits, and leakage currents, the breakers do not protect against arcing conditions. This paper presents results obtained in experiments on ignition behavior of wire by series arc fault currents and techniques developed to detect the arc-faults. The developed technique was tested after installation to make sure that they are working properly and protecting the circuit. If the developed arc fault detection technique is applied, the electrical fires caused by an arc-fault can be reduced.

Hazard Assessment of Explosion in Suspended Dust of Wood (목재 부유분진의 폭발 위험성 평가)

  • Lee, Keun Won;Lee, Su-Hee;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.81-86
    • /
    • 2013
  • Accidents of dust explosion has been occurred in various industries as a plastics, pharmaceuticals, timber, grain storage, solid fuels and chemicals. In this study, the silo dust, hammer mill dust and Nyusong dust in the manufacturing process of the particle board to utilize west wood, which were selected for this experiment and were evaluated the characteristics of dust explosion. The explosion characteristics such as a maximum explosion pressure, explosion index, lower explosive limit, and minimum ignition energy in suspended dust of the wood by Siwek 20 L apparatus were measured and evaluated for the experiment. The results of this study can be used the process safety measures to prevent accidents of fire and explosion in the suspended dust of wood.

Manufacturing of artificial lightweight aggregate from water treatment sludge and application to Non-point treatment filteration (정수슬러지를 재활용한 인공경량골재의 제조 및 비점오염원 여재의 적용)

  • Jung, Sung-Un;Lee, Seoung-Ho;Namgung, Hyun-Min
    • Industry Promotion Research
    • /
    • v.6 no.4
    • /
    • pp.1-9
    • /
    • 2021
  • The purpose of this study is to manufacture lightweight aggregates for recycling water treatment sludge, to identify the physical properties of the aggregates, and present a method of utilizing the manufactured lightweight aggregates. The chemical composition and thermal properties were examined via a raw materials analysis. The aggregate examined here was fired by the rapid sintering method and the single-particle density and water absorption rate were measured. Water treatment sludge has high ignition loss and high fire resistance. When 30wt% of purified sludge was added, the single-particle density of the aggregates was in the range of 0.8~1.2g/cm3 at a temperature of 1,150~1,200℃. At temperatures of 1200℃ or higher, ultra-light aggregates having a single-particle density of 0.8 or less could be produced. When applied to concrete by replacing the general aggregate in the concrete, a specimen having strength values of 200 to 450 kgf/cm2 on 28 days was obtained, and when applied as a filter material, the performance was equal to or higher than that of ordinary sand.

Evaluation of Electrochemical Properties of Amorphous LLZO Solid Electrolyte Through Li2O Co-Sputtering (Li2O Co-Sputtering을 통한 비정질 LLZO 고체전해질의 전기화학 특성 평가)

  • Park, Jun-Seob;Kim, Jong-Heon;Kim, Hyun-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.11
    • /
    • pp.614-618
    • /
    • 2021
  • As the size of market for electric vehicles and energy storage systems grows, the demand for lithium-ion batteries (LIBs) is increasing. Currently, commercial LIBs are fabricated with liquid electrolytes, which have some safety issues such as low chemical stability, which can cause ignition of fire. As a substitute for liquid electrolytes, solid electrolytes are now being extensively studied. However, solid electrolytes have disadvantages of low ionic conductivity and high resistance at interface between electrode and electrolyte. In this study, Li7La3Zr2O12 (LLZO), one of the best ion conducting materials among oxide based solid electrolytes, is fabricated through RF-sputtering and various electrochemical properties are analyzed. Moreover, the electrochemical properties of LLZO are found to significantly improve with co-sputtered Li2O. An all-solid thin film battery is fabricated by introducing a thin film solid electrolyte and an Li4Ti5O12 (LTO) cathode; resulting electrochemical properties are also analyzed. The LLZO/Li2O (60W) sample shows a very good performance in ionic conductivity of 7.3×10-8 S/cm, with improvement in c-rate and stable cycle performance.