• Title/Summary/Keyword: Fire events

Search Result 154, Processing Time 0.023 seconds

Minimal Cut Set of Electric Power Installations using Fault Tree Analysis (FTA를 이용한 수변전설비의 최소절단집합 도출)

  • Park, Young-Ho;Kim, Doo-Hyun;Kim, Sung-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.41-46
    • /
    • 2017
  • In this paper, from making an electrical fire which is thought to be the most damaging among potential dangers as a top event, minimal cut sets (MCS) about it were analyzed. For this, components of a power substation were classified into 15 items. Failure rates and modes were extracted based on Korea Electrical Safety Corporation, IEEE Gold Book, and RAC. To analyze the top event (an electrical fire), main events were assorted into "safety devices for overcurrent" and "ampere meter of detecter". Failure of components was divided into failure of VCB, COS, and MCCB. A fault tree was composed of 3 AND gate, 5 OR gates and 17 basic events. Overlapped events among the basic events are things which occur from relevant components. They were attached to the tree by distinguishing identifiers. In case of FT, two minimal cut sets of "IO_METER", "MF_METER", "DO_MCCB" and "IO_METER", "MF_METER", "DO_VCB" take 46% of electrical fires. Therefore, about basic events which are included in the top two minimum cut sets, strict control is necessary.

The Relationships among Experiences of Traumatic Events, Post-traumatic Stress and the Needs for Health Promotion Programs of 119 Paramedics (119구급대원의 외상사건 경험, 외상후 스트레스와 건강증진 프로그램 요구도와의 관계)

  • Kang, Mi Suk;Kim, Young Im;Geun, Hyo Geun
    • Research in Community and Public Health Nursing
    • /
    • v.28 no.4
    • /
    • pp.524-536
    • /
    • 2017
  • Purpose: This study aims to examine the relationships among experiences of traumatic events, post-traumatic stress (PTS), and the needs for health promotion programs of 119 paramedics. Methods: Experiences of traumatic events, PTS, and needs for health promotion programs were measured using a structured questionnaire. The subjects were 193 paramedics in Jeju Island. Data were analyzed using descriptive statistics, t-test and $x^2$ test. Results: The most experienced event out of the 16 different traumatic events was 'retrieve a suicide's body.' A high-risk classification of PTS was observed in 36.2% of the subjects. The rates of experiences were higher than those of the actual needs for all 26 health promotion programs. The programs reported as highly needed by respondents were stress management (75.5%) followed by exercise (74.6%) and PTS management (72.5%). Subjects with longer career periods, a fire sergeant, perceived obesity, numerous experiences of traumatic events, and in the PTS risk group had a higher need for a stress management program. Conclusion: These findings indicate that a significant number of 119 paramedics experienced PTS. They also show that onsite strategic management is strongly required. In addition, implementation of health promotion programs based on the needs of 119 paramedics is highly needed.

Fire Behavior of Steel Columns Encased by Damaged Spray-applied Fire Resistive Material

  • Kwak, Yoon Keun;Pessiki, Stephen;Kwon, Kihyon
    • Architectural research
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • A Steel column with damaged spray-applied fire resistive material (SFRM) may exhibit reduced structural performance due to the effects of elevated temperature during fire events. Thus, the fire load behavior of steel columns with removed or reduced SFRM needs to be examined to predict the structural damage by fire. FEM analyses were performed for the flange thinning removal models in which the SFRM was reduced as a constant strip in thickness at the top flange of the column. The temperature results for all models obtained from the heat transfer analyses were included as an initial condition in the FEM structural analyses. In this study, the results of analysis show that even small remnants of SFRM led to an effective reduction of temperature at any given fire duration, and improved significantly the axial load capacity of a column as compared to the complete removal cases of SFRM.

A Study on Improvement of Crash Discrimination Performance for Offset and Angular Crash Events Using Electronic X-Y 2-Axis Accelerometer (전자식 X-Y 이축 가속도 센서를 이용한 오프셋 및 경사 충돌에 대한 충돌 판별 성능 개선에 관한 연구)

  • 박서욱;전만철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.128-136
    • /
    • 2003
  • In today's design trend of vehicle structure, crush zone is fiequently reinforced by adding a box-shaped sub-frame in order to avoid an excessive deformation against a high-speed offset barrier such as EU Directive 96/97 EC, IIHS offset test. That kind of vehicle structure design results in a relatively monotonic crash pulse for airbag ECU(Electronic Control Unit) located at non-crush zone. As for an angular crash event, the measured crash signal using a single-axis accelerometer in a longitudinal direction is usually weaker than that of frontal barrier crash. Therefore, it is not so easy task to achieve a satisfactory crash discrimination performance for offset and angular crash events. In this paper, we introduce a new crash discrimination algorithm using an electronic X-Y 2-axis accelerometer in order to improve crash discrimination performance especially for those crash events. The proposed method uses a crash signal in lateral direction(Y-axis) as well as in longitudinal direction(X-axis). A crash severity measure obtained from Y-axis acceleration is used to improve the discrimination between fire and no-fire events. The result obtained by the proposed measure is logically ORed with an existing algorithm block using X-axis crash signal. Simulation and pulse injection test have been conducted to verify the performance of proposed algorithm by using real crash data of a 2,000cc passenger vehicle.

Assessment of Post-Earthquake Fire Behavior of a Steel MRF Building in a Low Seismic Region

  • Chicchi, Rachel;Varma, Amit
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1470-1481
    • /
    • 2018
  • Building-level response to post-earthquake fire hazards in steel buildings has been assessed using primarily two-dimensional analyses of the lateral force resisting system. This approach may not adequately consider potential vulnerabilities in the gravity framing system. For this reason, three-dimensional (3D) finite element models of a 10-story case study building with perimeter moment resisting frames were developed to analyze post-earthquake fire events and better understand building response. Earthquakes are simulated using ground motion time histories, while Eurocode parametric time-temperature curves are used to represent compartment fires. Incremental dynamic analysis and incremental fire analysis procedures capture a range of hazard intensities. Findings show that the structural response due to earthquake and fire hazards are somewhat decoupled from one another. Regardless of the level of plastic hinging present in the moment framing system due to a seismic event, gravity column failure is the initiating failure mode in a fire event.

Forest Fire Risk Zonation in Madi Khola Watershed, Nepal

  • Jeetendra Gautam
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.24-34
    • /
    • 2024
  • Fire, being primarily a natural phenomenon, is impossible to control, although it is feasible to map the forest fire risk zone, minimizing the frequency of fires. The spread of a fire starting in any stand in a forest can be predicted, given the burning conditions. The natural cover of the land and the safety of the population may be threatened by the spread of forest fires; thus, the prevention of fire damage requires early discovery. Satellite data and geographic information system (GIS) can be used effectively to combine different forest-fire-causing factors for mapping the forest fire risk zone. This study mainly focuses on mapping forest fire risk in the Madikhola watershed. The primary causes of forest fires appear to be human negligence, uncontrolled fire in nearby forests and agricultural regions, and fire for pastoral purposes which were used to evaluate and assign risk values to the mapping process. The majority of fires, according to MODIS events, occurred from December to April, with March recording the highest occurrences. The Risk Zonation Map, which was prepared using LULC, Forest Type, Slope, Aspect, Elevation, Road Proximity, and Proximity to Water Bodies, showed that a High Fire Risk Zone comprised 29% of the Total Watershed Area, followed by a Moderate Risk Zone, covering 37% of the total area. The derived map products are helpful to local forest managers to minimize fire risks within the forests and take proper responses when fires break out. This study further recommends including the fuel factor and other fire-contributing factors to derive a higher resolution of the fire risk map.

Fire Detection Using Multi-Channel Information and Gray Level Co-occurrence Matrix Image Features

  • Jun, Jae-Hyun;Kim, Min-Jun;Jang, Yong-Suk;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.590-598
    • /
    • 2017
  • Recently, there has been an increase in the number of hazardous events, such as fire accidents. Monitoring systems that rely on human resources depend on people; hence, the performance of the system can be degraded when human operators are fatigued or tensed. It is easy to use fire alarm boxes; however, these are frequently activated by external factors such as temperature and humidity. We propose an approach to fire detection using an image processing technique. In this paper, we propose a fire detection method using multichannel information and gray level co-occurrence matrix (GLCM) image features. Multi-channels consist of RGB, YCbCr, and HSV color spaces. The flame color and smoke texture information are used to detect the flames and smoke, respectively. The experimental results show that the proposed method performs better than the previous method in terms of accuracy of fire detection.

Fire resistance tests of LSF walls under combined compression and bending actions

  • Peiris, Mithum;Mahendran, Mahen
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.483-500
    • /
    • 2022
  • Cold-formed steel wall panels sheathed with gypsum plasterboard have shown superior thermal and structural performance in fire. Recent damage caused by fire events in Australia has increased the need for accurate fire resistance ratings of wall systems used in low- and mid-rise construction. Past fire research has mostly focused on light gauge steel framed (LSF) walls under uniform axial compression and LSF floors under pure bending. However, in reality, LSF wall studs may be subject to both compression and bending actions due to eccentric loading at the wall to-roof or wall-to-floor connections. In order to investigate the fire resistance of LSF walls under the effects of these loading eccentricities, four full-scale standard fire tests were conducted on 3 m × 3 m LSF wall specimens lined with two 16 mm gypsum plasterboards under different combinations of axial compression and lateral load ratios. The findings show that the loading eccentricity can adversely affect the fire resistance level of the LSF wall depending on the magnitude of the eccentricity, the resultant compressive stresses in the hot and cold flanges of the wall studs caused by combined loading and the temperatures of the hot and cold flanges of the studs. Structural fire designers should consider the effects of loading eccentricity in the design of LSF walls to eliminate their potential failures in fire.

Factors influencing the resilience of firefighters (소방공무원의 극복력에 영향을 미치는 요인)

  • Kim, Jin Woo;Song, Hyo-Suk
    • The Korean Journal of Emergency Medical Services
    • /
    • v.25 no.1
    • /
    • pp.37-48
    • /
    • 2021
  • Purpose: The purpose of this study was to identify the degree of resilience, traumatic events, secondary traumatic stress, and calling reported by firefighters and to identify the factors affecting the resilience of firefighters. Methods: Data were collected using structured questionnaires and 200 fire officials working in D city were enrolled as the subjects. Data were analyzed using SPSS 24.0, and the analyses included descriptive statistics, independent t-test, ANOVA, Scheffé test, Pearson correlation coefficient, and multiple linear regression. Results: The difference in resilience according to general characteristics showed significant differences in health status (F=4.33, p=.014) and job satisfaction (F=6.13, p=.003). The factors affecting resilience were identified as calling (β=.25, p<.001), and the explanatory power for resilience was 19.2%. Conclusion: It is necessary to increase calling in order to increase resilience. Therefore, we suggest that professional education and programs that consider personal characteristics are needed to strengthen the calling.

Multivariate assessment of the occurrence of compound Hazards at the pan-Asian region

  • Davy Jean Abella;Kuk-Hyun Ahn
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.166-166
    • /
    • 2023
  • Compound hazards (CHs) are two or more extreme climate events combined which occur simultaneously in the same region at the same time. Compared to individual hazards, the combination of hazards that cause CHs can result in greater economic losses and deaths. While several extreme climate events have been recorded across Asia for the past decades, many studies have only focused on a single hazard. In this study, we assess the spatiotemporal pattern of dry compound hazards which includes drought, heatwave, fire and wind across Asia for the last 42 years (1980-2021) using the historical data from ERA5 Reanalysis dataset. We utilize a daily spatial data of each climate event to assess the occurrence of such compound hazards on a daily basis. Heatwave, fire and wind hazard occurrences are analyzed using daily percentile-based thresholds while a pre-defined threshold for SPI is applied for drought occurrence. Then, the occurrence of each type of compound hazard is taken from overlapping the map of daily occurrences of a single hazard. Lastly, a multivariate assessment are conducted to quantify the occurrence frequency, hotspots and trends of each type of compound hazard across Asia. By conducting a multivariate analysis of the occurrence of these compound hazards, we identify the relationships and interactions in dry compound hazards including droughts, heatwaves, fires, and winds, ultimately leading to better-informed decisions and strategies in the natural risk management.

  • PDF