• Title/Summary/Keyword: Fire detection algorithm

Search Result 156, Processing Time 0.027 seconds

Detecting Anomalous Trajectories of Workers using Density Method

  • Lan, Doi Thi;Yoon, Seokhoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.109-118
    • /
    • 2022
  • Workers' anomalous trajectories allow us to detect emergency situations in the workplace, such as accidents of workers, security threats, and fire. In this work, we develop a scheme to detect abnormal trajectories of workers using the edit distance on real sequence (EDR) and density method. Our anomaly detection scheme consists of two phases: offline phase and online phase. In the offline phase, we design a method to determine the algorithm parameters: distance threshold and density threshold using accumulated trajectories. In the online phase, an input trajectory is detected as normal or abnormal. To achieve this objective, neighbor density of the input trajectory is calculated using the distance threshold. Then, the input trajectory is marked as an anomaly if its density is less than the density threshold. We also evaluate performance of the proposed scheme based on the MIT Badge dataset in this work. The experimental results show that over 80 % of anomalous trajectories are detected with a precision of about 70 %, and F1-score achieves 74.68 %.

Development of a deep-learning based automatic tracking of moving vehicles and incident detection processes on tunnels (딥러닝 기반 터널 내 이동체 자동 추적 및 유고상황 자동 감지 프로세스 개발)

  • Lee, Kyu Beom;Shin, Hyu Soung;Kim, Dong Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1161-1175
    • /
    • 2018
  • An unexpected event could be easily followed by a large secondary accident due to the limitation in sight of drivers in road tunnels. Therefore, a series of automated incident detection systems have been under operation, which, however, appear in very low detection rates due to very low image qualities on CCTVs in tunnels. In order to overcome that limit, deep learning based tunnel incident detection system was developed, which already showed high detection rates in November of 2017. However, since the object detection process could deal with only still images, moving direction and speed of moving vehicles could not be identified. Furthermore it was hard to detect stopping and reverse the status of moving vehicles. Therefore, apart from the object detection, an object tracking method has been introduced and combined with the detection algorithm to track the moving vehicles. Also, stopping-reverse discrimination algorithm was proposed, thereby implementing into the combined incident detection processes. Each performance on detection of stopping, reverse driving and fire incident state were evaluated with showing 100% detection rate. But the detection for 'person' object appears relatively low success rate to 78.5%. Nevertheless, it is believed that the enlarged richness of image big-data could dramatically enhance the detection capacity of the automatic incident detection system.

A Study on the Promotion of Safety Management at Construction Sites Using AIoT and Mobile Technology (AIoT와 Mobile기술을 활용한 건설현장 안전관리 활성화 방안에 관한 연구)

  • Ahn, Hyeongdo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.154-162
    • /
    • 2022
  • Purpose: The government intends to come up with measures to revitalize safety management at construction sites to shift safety management at construction sites from human capabilities to system-oriented management systems using advanced technologies AIoT and Mobile technologies. Method: The construction site safety management monitoring system using AIoT and Mobile technology conducted an experiment on the effectiveness of the construction site by applying three algorithms: virtual fence, fire monitoring, and recognition of not wearing a safety helmet. Result: The number of workers in the experiment was 215 and 7.61 virtual fence intrusion was 3.5% compared to the number of subjects and 0.16 fire detection were 0.07% compared to the subjects, and the average monthly rate of not wearing a safety helmet was 8.79, 4.05% compared to the subjects. Conclusion: It was found that the construction site safety management monitoring system using AIoT and Mobile technology has a valid effect on the construction site.

Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images (Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시)

  • Sihyun Lee;Yoojin Kang;Taejun Sung;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.979-995
    • /
    • 2023
  • As wildfires are difficult to predict, real-time monitoring is crucial for a timely response. Geostationary satellite images are very useful for active fire detection because they can monitor a vast area with high temporal resolution (e.g., 2 min). Existing satellite-based active fire detection algorithms detect thermal outliers using threshold values based on the statistical analysis of brightness temperature. However, the difficulty in establishing suitable thresholds for such threshold-based methods hinders their ability to detect fires with low intensity and achieve generalized performance. In light of these challenges, machine learning has emerged as a potential-solution. Until now, relatively simple techniques such as random forest, Vanilla convolutional neural network (CNN), and U-net have been applied for active fire detection. Therefore, this study proposed an active fire detection algorithm using state-of-the-art (SOTA) deep learning techniques using data from the Advanced Himawari Imager and evaluated it over East Asia and Australia. The SOTA model was developed by applying EfficientNet and lion optimizer, and the results were compared with the model using the Vanilla CNN structure. EfficientNet outperformed CNN with F1-scores of 0.88 and 0.83 in East Asia and Australia, respectively. The performance was better after using weighted loss, equal sampling, and image augmentation techniques to fix data imbalance issues compared to before the techniques were used, resulting in F1-scores of 0.92 in East Asia and 0.84 in Australia. It is anticipated that timely responses facilitated by the SOTA deep learning-based approach for active fire detection will effectively mitigate the damage caused by wildfires.

Satellite-based Forest Withering Index for Detection of Fire Burn Area: Its Development and Application to 2019 Kangwon Wildfires (산불피해지 탐지를 위한 위성기반 산림고사지수 개발 및 2019년 4월 강원 산불 사례에의 적용)

  • Park, Seong-Wook;Lee, Soo-Jin;Chung, Chu-Yong;Chung, Sung-Rae;Shin, Inchul;Jung, Won-Chan;Mo, Hee-Sook;Kim, Sang-Il;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.343-346
    • /
    • 2019
  • This letter describes a development of satellite-based forest withering index for detection of fire burn area and its application to the Goseong-Sokcho and Gangneung-Donghae wildfires in April 4, 2019. Withered forest has very different spectral characteristics from healthy forest. In particular, a false color composite of R-NIR-G represents such difference very clearly. Using Sentinel-2 images with the forest withering index, we derived the area burned by the wildfires: approximately 701.16 ha for Goseong-Sokcho and approximately 710.60 ha for Gangneung-Donghae, although official record will be announced by the Korean government later.

A Study on Optimization of Intelligent Video Surveillance System based on Embedded Module (임베디드 모듈 기반 지능형 영상감시 시스템의 최적화에 관한 연구)

  • Kim, Jin Su;Kim, Min-Gu;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.7 no.2
    • /
    • pp.40-46
    • /
    • 2018
  • The conventional CCTV surveillance system for preventing accidents and incidents misses 95% of the data after 22 minutes where one person monitors multiple CCTV. To address this issue, researchers have studied the computer-based intelligent video surveillance system for notifying people of the abnormal situation. However, because the system is involved in the problems of power consumption and costs, the intelligent video surveillance system based on embedded modules has been studied. This paper implements the intelligent video surveillance system based on embedded modules for detecting intruders, detecting fires and detecting loitering, falling. Moreover, the algorithm and the embedded module optimization method are applied to implement real-time processing. The intelligent video surveillance system based on embedded modules is implemented in Raspberry Pi. The algorithm processing time is 0.95 seconds on Raspberry Pi before optimization, and 0.47 seconds on Raspberry Pi after optimization, reduced processing time by 50.52%. Therefore, this suggests real processing possibility of the intelligent video surveillance system based on the embedded modules is possible.

Beam Scheduling and Task Design Method using TaP Algorithm at Multifunction Radar System (다기능 레이다 시스템에서 TaP(Time and Priority) 알고리즘을 이용한 빔 스케줄링 방안 및 Task 설계방법)

  • Cho, In-Cheol;Hyun, Jun-Seok;Yoo, Dong-Gil;Shon, Sung-Hwan;Cho, Won-Min;Song, Jun-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • In the past, radars have been classified into fire control radars, detection radars, tracking radars, and image acquisition radars according to the characteristics of the mission. However, multi-function radars perform various tasks within a single system, such as target detection, tracking, identification friend or foe, jammer detection and response. Therefore, efficient resource management is essential to operate multi-function radars with limited resources. In particular, the target threat for tracking the detected target and the method of selecting the tracking cycle based on this is an important issue. If focus on tracking a threat target, Radar can't efficiently manage the targets detected in other areas, and if you focus on detection, tracking performance may decrease. Therefore, effective scheduling is essential. In this paper, we propose the TaP (Time and Priority) algorithm, which is a multi-functional radar scheduling scheme, and a software design method to construct it.

WSN Lifetime Analysis: Intelligent UAV and Arc Selection Algorithm for Energy Conservation in Isolated Wireless Sensor Networks

  • Perumal, P.Shunmuga;Uthariaraj, V.Rhymend;Christo, V.R.Elgin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.901-920
    • /
    • 2015
  • Wireless Sensor Networks (WSNs) are widely used in geographically isolated applications like military border area monitoring, battle field surveillance, forest fire detection systems, etc. Uninterrupted power supply is not possible in isolated locations and hence sensor nodes live on their own battery power. Localization of sensor nodes in isolated locations is important to identify the location of event for further actions. Existing localization algorithms consume more energy at sensor nodes for computation and communication thereby reduce the lifetime of entire WSNs. Existing approaches also suffer with less localization coverage and localization accuracy. The objective of the proposed work is to increase the lifetime of WSNs while increasing the localization coverage and localization accuracy. A novel intelligent unmanned aerial vehicle anchor node (IUAN) is proposed to reduce the communication cost at sensor nodes during localization. Further, the localization computation cost is reduced at each sensor node by the proposed intelligent arc selection (IAS) algorithm. IUANs construct the location-distance messages (LDMs) for sensor nodes deployed in isolated locations and reach the Control Station (CS). Further, the CS aggregates the LDMs from different IUANs and computes the position of sensor nodes using IAS algorithm. The life time of WSN is analyzed in this paper to prove the efficiency of the proposed localization approach. The proposed localization approach considerably extends the lifetime of WSNs, localization coverage and localization accuracy in isolated environments.

Detection of short-term changes using MODIS daily dynamic cloud-free composite algorithm

  • Kim, Sun-Hwa;Eun, Jeong;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.259-276
    • /
    • 2011
  • Short-term land cover changes, such as forest fire scar and crop harvesting, can be detected by high temporal resolution satellite imagery like MODIS and AVHRR. Because these optical satellite images are often obscured by clouds, the static cloud-free composite methods (maximum NDVI, minblue, minVZA, etc.) has been used based on non-overlapping composite period (8-day, 16-day, or a month). Due to relatively long time lag between successive images, these methods are not suitable for observing short-term land cover changes in near-real time. In this study, we suggested a new dynamic cloud-free composite algorithm that uses cut-and-patch method of cloud-masked daily MODIS data using MOD35 products. Because this dynamic composite algorithm generates daily cloud-free MODIS images with the most recent information, it can be used to monitor short-term land cover changes in near-real time. The dynamic composite algorithm also provides information on the date of each pixel used in compositing, thereby makes accurately identify the date of short-term event.

Pattern Template Construction of Buried Pipes and Cavities (매립 파이프 및 공동의 패턴 템플레이트 구축)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.80-86
    • /
    • 2017
  • The purpose of this study is to construct a pattern database of pipes and cavities buried in the ground to prevent ground subsidence. To do this, it developed a pattern template algorithm using Open CV and applied it to the results of GPR detection results of tank. As a result, proper pattern database construction was possible. Since the results of this study are based only on limited experimental results, it is expected that more realistic data will be constructed if various field data and detection results of large test beds are supplemented in the future.