• Title/Summary/Keyword: Fire design model

Search Result 241, Processing Time 0.024 seconds

Quantitative Fire Risk Assesment for the Subway Platform Types (지하철 승강장 형식에 따른 정량적 화재 위험성 평가)

  • Rie, Dong-Ho;Kim, Ha-Young
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.1-6
    • /
    • 2006
  • Subway platform is divided into Side-platform type and Center-platform type. In this study does quantitative fire risk assesment of subway platform types in numerical analysis by using CFD model. From the result of this study, 1) All exhaust mode was low-end result it seems most fire risk at Side-platform station. 2) All exhaust mode was low-end result it seems most fire risk at Center-Platform station. 3) When comparing same type exhaust mode of Side-platform and Center-platform that last thing was visible $9.1{\sim}72.34%$ low-end fire risk. Center-platform is more opera-tive than Side-platform that reduce fire risk when that was same dimension and external environment. Designer look upon a fire characteristic of subway platform types when he make smoke control air volume and platform area design.

Numerical analysis on the behaviour of reinforced concrete frame structures in fire

  • Dzolev, Igor M.;Cvetkovska, Meri J.;Ladinovic, Dorde Z.;Radonjanin, Vlastimir S.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.637-647
    • /
    • 2018
  • Numerical approach using finite element method has been used to evaluate the behaviour of reinforced concrete frame structure subjected to fire. The structure is previously designed in accordance with Eurocode standards for the design of structures for earthquake resistance, for the ductility class M. Thermal and structural response are obtained using a commercially available software ANSYS. Temperature-dependent nonlinear thermal and mechanical properties are adopted according to Eurocode standards, with the application of constitutive model for the triaxial behaviour of concrete with a smeared crack approach. Discrete modelling of concrete and reinforcement has enabled monitoring of the behaviour at a global, as well as at a local level, providing information on the level of damage occurring during fire. Critical regions in frame structures are identified and assessed, based on temperatures, displacements, variations of internal forces magnitudes and achieved plastic deformations of main reinforcement bars. Parametric analyses are conducted for different fire scenarios and different types of concrete aggregate to determine their effect on global deformations of frame structures. According to analyses results, the three-dimensional finite element model can be used to evaluate the insulation and mechanical resistance criteria of reinforced concrete frame structures subjected to nominal fire curves.

Numerical Analysis on Pressurization System of Smoke Control in Consideration of Flow Rate of Supply and Leakage (보충량과 누설량을 고려한 급기가압 제연시스템의 수치해석 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.87-93
    • /
    • 2010
  • The fact that the smoke hinders evacuation and fire-fighting activities as well as becomes the major cause of life casualty emphasizes the importance of smoke control system. As one of the fire safety standards designed to secure the smoke safety, NFSC501A (Design Guide for Smoke Control System of Special Evacuation Stairwell and Lobby) has been proposed, preventing smoke from penetrating into the smoke-free escape route by raising the pressure of the smoke control zone higher than fire area. For model building of 20 stories, pressurization system was designed according to standard and pressure field of compartments in whole building induced by pressurization system was analyzed using the network model.

DB Construction of Activation Temperature and Response Time Index for Domestic Fixed-temperature Heat Detectors in Ceiling Jet Flow (천장제트기류에 대한 국내 정온식 열감지기의 작동온도 및 반응시간지수(RTI)에 관한 DB 구축)

  • Yoon, Ga-Yeong;Han, Ho-Sik;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.34 no.3
    • /
    • pp.35-42
    • /
    • 2020
  • The accurate prediction of fire detector activation time is required to ensure the reliability of fire modeling during the safety assessment of performance-based fire safety design. The main objective of this study is to determine the activation temperature and the response time index (RTI) of a fixed heat detector, which are the main input factors of a fixed-temperature heat detector applied to the fire dynamics simulator (FDS), a typical fire model. Therefore, a fire detector evaluator, which is a fire detector experimental apparatus, was applied, and 10 types of domestic fixed-temperature heat detectors were selected through a product recognition survey. It was found that there were significant differences in the activation temperature and RTI among the detectors. Additionally, the detector activation time of the FDS with the measured DB can be predicted more accurately. Finally, the DB of the activation temperature and RTI of the fixed-temperature heat detectors with reliability was provided.

3D finite element analysis of the whole-building behavior of tall building in fire

  • Fu, Feng
    • Advances in Computational Design
    • /
    • v.1 no.4
    • /
    • pp.329-344
    • /
    • 2016
  • In this paper, a methodology to simulate the whole-building behaviour of the tall building under fire is developed by the author using a 3-D nonlinear finite element method. The mechanical and thermal material nonlinearities of the structural members, such as the structural steel members, concrete slabs and reinforcing bars were included in the model. In order to closely simulate the real condition under the conventional fire incident, in the simulation, the fire temperature was applied on level 9, 10 and 11. Then, a numerical investigation on the whole-building response of the building in fire was made. The temperature distribution of the floor slabs, steel beams and columns were predicted. In addition, the behaviours of the structural members under fire such as beam force, column force and deflections were also investigated.

A Study on the Smoke Control in Pressure Differential Systems (급기가압 제연댐퍼 위치에 따른 방연풍속특성 및 성능개선방안에 관한 연구)

  • Bae, Sang-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.239-244
    • /
    • 2011
  • This study is aimed to develop fundamental technology on the smoke control method by simulation model and scale model simulation technique in pressure differential systems. Thereby, this research aimed to establish design elements and technologies required for smoke control system that is suitable to pressure differential systems of the high-rise buildings in order to minimize the loss of lives and property damage in case of fire.

  • PDF

A Study on the Evacuation of People used the evacuation model on Fire in Shopping Mall (피난 모델을 이용한 대형할인매장의 화재시 피난에 관한 연구)

  • 이수경;이상준
    • Fire Science and Engineering
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2000
  • For life safety design of shopping mall, we selected a shopping mall, and calculated the evacuation time of means of egress. It is calculated by two kind of evacuation method. One is the computer simulation model, EXODUS. The other is Japan's method. Study way is a model structure study, selecting real shopping mall and setting scenario, calculating the evacuating time. result of study, evaluation time is very high. Therefore we confirmed that the building of means of egress is not fit to evacuation more the capacity of setting population.

  • PDF

Model-Based Architecture Design of the Range Safety Process for Live Fire Test with Enhanced Safety (실사격 시험 프로세스의 안전성 강화를 위한 MBSE 기반 아키텍처 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.43-52
    • /
    • 2014
  • In weapon systems development, live fire tests have been frequently adopted to evaluate the performance of the systems under development. Therefore, it is necessary to ensure safety in the test ranges where the live fire tests can cause serious hazards. During the tests, a special care must be taken to protect the test and evaluation (T&E) personnel and also test assets from potential danger and hazards. Thus, the development and management of the range safety process is quite important in the tests of guided missiles and artillery considering the explosive power of the destruction. Note also that with a newly evolving era of weapon systems such as laser, EMP and non-lethal weapons, the test procedure for such systems is very complex. Therefore, keeping the safety level in the test ranges is getting more difficult due to the increased unpredictability for unknown hazards. The objective of this paper is to study on how to enhance the safety in the test ranges. To do so, an approach is proposed based on model-based systems engineering (MBSE). Specifically, a functional architecture is derived utilizing the MBSE method for the design of the range safety process under the condition that the derived architecture must satisfy both the complex test situation and the safety requirements. The architecture developed in the paper has also been investigated by simulation using a computer-aided systems engineering tool. The systematic application of this study in weapon live tests is expected to reduce unexpected hazards and test design time. Our approach is intended to be a trial to get closer to the recent theme in T&E community, "Testing at the speed of stakeholder's need and rapid requirement for rapid acquisition."

On the Development of the Generic CFCS for Engineering Level Simulation of the Surface Ship (공학수준 수상함 지휘무장통제체계 범용 모델 개발방안 연구)

  • Jung, Young-Ran;Han, Woong-Gie;Kim, Cheol-Ho;Kim, Jae-Ick
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.380-387
    • /
    • 2011
  • In this paper, we considered the authoritative representation of Command and Fire Control System(CFCS) for the surface ship that was the engineering level model to develop system specifications and to analyze operational concepts on the concept design phase and to analyze military requirements, effectiveness and performance for the system. The engineering level model of CFCS can be used in simulation independently of the surface ship's type, and also it takes reuse, interoperability, and extension into consideration. The detailed sub-models, internal and external data interface, data flow among each sub-model, sensor and weapon models about the engineering level model of CFCS was defined. It was verified via engineering level simulations according to the V&V process.

Effects of the structural strength of fire protection insulation systems in offshore installations

  • Park, Dae Kyeom;Kim, Jeong Hwan;Park, Jun Seok;Ha, Yeon Chul;Seo, Jung Kwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.493-510
    • /
    • 2021
  • Mineral wool is an insulation material commonly used in passive fire protection (PFP) systems on offshore installations. Insulation materials have only been considered functional materials for thermal analysis in the conventional offshore PFP system design method. Hence, the structural performance of insulation has yet to be considered in the design of PFP systems. However, the structural elements of offshore PFP systems are often designed with excessive dimensions to satisfy structural requirements under external loads such as wind, fire and explosive pressure. To verify the structural contribution of insulation material, it was considered a structural material in this study. A series of material tensile tests was undertaken with two types of mineral wool at room temperature and at elevated temperatures for fire conditions. The mechanical properties were then verified with modified methods, and a database was constructed for application in a series of nonlinear structural and thermal finite-element analyses of an offshore bulkhead-type PFP system. Numerical analyses were performed with a conventional model without insulation and with a new suggested model with insulation. These analyses showed the structural contribution of the insulation in the structural behaviour of the PFP panel. The results suggest the need to consider the structural strength of the insulation material in PFP systems during the structural design step for offshore installations.