• Title/Summary/Keyword: Fire and evacuation simulation

Search Result 211, Processing Time 0.024 seconds

A Study on Securing Safety for High Rise Building Fires - Applying Active Fire Escape Systems -

  • Myung Sik, Lee;Sung Jae, Han
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.227-240
    • /
    • 2022
  • Under the Korean Enforcement Decree of the Building Act, all high story apartment houses more than 5 stories high are mandated to install a fire evacuation system to ensure safe evacuation from fire accidents and providing quick and easy bidirectional escape route when main entrance is blocked by flame or toxic smoke. However, the current fire evacuation system shows a lack of understanding from residents and thus is widely ignored for having insufficient safety functions, especially vis-à-vis fire emergencies. Studies have found that an alternative evacuation method, the escapable fire evacuation system, has been analyzed for safety evaluation compared with the conventional passive fire escape system and can bring efficient and safer solutions, providing high rise residents escape from fire accidents. Evaluation for safety evacuation has been performed by the Fire Dynamics Simulation and applying Pathfinder simulation. This resulted in providing appropriate escape routes within the safety escape time and allowed for people in high rise building fires to get to safety.

The Necessity of Introducing Fire Point Notification Displays in Complex Buildings to Reduce Required Safe Escape Time(RSET) (RSET 감소를 위한 복합건축물의 화재발생지점 알림표시등 도입 필요성)

  • Jusung Kim;Jongkwen Ha;Hasung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.3
    • /
    • pp.71-82
    • /
    • 2024
  • In modern society, buildings are becoming more complex, and the population is becoming more densely populated. Such large buildings require a variety of evacuation measures, as there is a high possibility of large-scale human casualties due to increased evacuation distance and evacuation time in the event of a fire. Strobe light and exit sign light are used as important evacuation equipment to provide early warning and evacuation directions. In this thesis, we conducted a fire simulation assuming that a fire occurrence point notification function and a strobe light function were added to equipment such as visual alarms and evacuation guidance, and compared and analyzed the difference in evacuation completion time with existing equipment. The scenarios for the simulation were divided into "general fire situations" and "fire location and evacuation exit guidance situation" and the differences in evacuation completion time in the event of a fire were compared and analyzed for each floor from the 1st floor to the 3rd floor. The maximum travel distance to complete evacuation in the case of a fire on the first floor decreased by 80.6 m and the evacuation completion time decreased by 329.4 seconds, and the maximum travel distance to complete evacuation in the case of a second-floor fire decreased by 28.5 m and the evacuation completion time by 438.8 seconds. During the fire on the third floor, the maximum distance decreased until evacuation was completed to 3.4 m, and the evacuation completion time was reduced by 355.6 seconds. It is expected that if the congestion level of evacuation routes is reduced by utilizing the congestion level of evacuation exits when fire alarm systems and evacuation equipment are activated, the evacuation completion time will be further shortened and evacuations will be carried out quickly and safely.

Evacuation Safety Evaluation for Apartment Complexes and Officetel under Floors (공동주택 및 오피스텔 지하층에 대한 피난 안전성 평가)

  • Hyeon-gwon Kang;Yong-Han Jeon
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.4
    • /
    • pp.67-72
    • /
    • 2023
  • Human and material damage can be reduced if the risk is evaluated by engineering analysis of fire combustion products, smoke concentration, and smoke movement speed in the event of a fire in apartment houses and officetels. In this study, a lot of research on related safety evaluation in the basement needs to be studied and reflected in design, so experimental research was conducted to analyze the flow of smoke through computer simulation and provide analysis data through evacuation safety evaluation. First of all, the five-story underground parking lot subject to simulation has a large floor area, which is advantageous for improving evacuation safety performance, but it uses temperature detectors to increase detection time and fire spread speed. Second, it was analyzed that the evacuation time at all evacuation ports did not exceed the evacuation time, and as the time from the start of evacuation to the evacuation time was 216.9% compared to the travel time, it was evaluated that the safety performance of the evacuation was secured. Third, the above simulation results are a comprehensive safety evaluation based on the non-operation of fire extinguishing facilities in the fire room to increase safety, which means that smoother evacuation safety performance can be secured by linking fire extinguishing facilities.

A Study on the Analysis of Simulation for Improvement Evacuation Safety Assessment of Building in Fire (건축물의 화재 시 피난안전성 평가 개선을 위한 시뮬레이션 분석 연구)

  • Kim, Hye-won;Kim, Yoon-Seong;Lee, Byeong-Heun;Jin, Seung-Hyeon;Koo, In-Hyuk;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.107-108
    • /
    • 2020
  • There is a need to analyze various factors in evacuation safety assessment of building in fire. In the current performance based design, evacuation safety assessment in case of fire is being conducted through the simulation as FDS and Pathfinder. However, the location and size of the door, the location of evacuation in the event of a fire are not considered when design. Accordingly, it is difficult to determine the worst case scenario considering the actual fire. Therefore in this study, in this study, we will propose an appropriate evaluation plan through simulation considering the worst-case scenario that may occur in case of fire.

  • PDF

Measures to Increase Evacuation Safety through Performance-Based Design of Escape Room Cafes (방탈출카페의 성능위주설계에 의한 피난안전성 확대 방안)

  • Hong-Sang Lee;Jai Young Lee;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.4
    • /
    • pp.95-104
    • /
    • 2023
  • The purpose of this study is to propose measures to increase evacuation safety by calculating the habitable time using a fire and evacuation simulation program for the Room-escape cafe currently in operation, and comparing and analyzing it with the evacuation required time. Assuming a fire due to overheating of electric heaters in use in front of the warehouse, the habitable time was calculated through fire simulation, and the occupant's evacuation time calculated through evacuation simulation according installation of safety facilities, etc. was compared and analyzed with the habitable time. In the case of escape room cafes with safety facilities installed, evacuation safety was satisfied, but in escape room cafes without safety facilities, the evacuation safety was not secure. As a result of analyzing evacuation safety for each scenario based on the ASET analyzed in the fire simulation, it was found that in scenario 1, evacuation safety was secured and everyone successfully evacuated, while in scenario 2, no one succeeded in evacuation. These results can be said to confirm that the installation of safety facilities is very important in business establishments such as escape room cafes, which become enclosed structures when games are started.

Effects of computer and demonstration scenario simulation using smart fire evacuation guidance on evacuation induction and time (스마트 화재대피 유도 컴퓨터 및 실증 시나리오 시뮬레이션이 피난 유도와 시간에 미치는 영향)

  • Shin, Dong-Min;Cho, Byung-Jun
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.244-253
    • /
    • 2021
  • This study examined how the fire evacuation induction service system using a smartphone navigation application in the event of a fire affects the fire evacuation time, and the following conclusions were drawn. 1. The evacuation time was reduced by 22 seconds when the navigation application was used in computer scenario simulation. Even in the demonstration simulation, the evacuation time was reduced by 40 seconds when the navigation application was used. This indicates that the navigation application is effective in shortening the evacuation time in case of fire. 2. As a result of the demonstration scenario simulation, the time until the end of evacuation was 39 seconds faster in the case of evacuation guidance than in the case where it was not conducted. 3. No bottlenecks occurred in the evacuation route during the demonstration scenario simulation. As a result, there was a difference in the time required to complete the evacuation between the computer scenario simulation and the demonstration scenario simulation.

A study of evacuation time in a subway carriage fire (지하철 객차 화재발생시 피난 시간에 대한 연구)

  • Kim, Seong-Ryul;Roh, Jae-Seong;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1313-1318
    • /
    • 2007
  • Recently, the terror frequently has taken place for unspecified individuals as modern society is complicated. Especially, in case of a subway carriage fire as Daegu subway fire, because smoke spread path usually coincide with passenger's evacuation path, it will reduce visibility and can cause fatalities by asphyxiation. This study performs not only fire simulation with CFAST V6 but also evacuation simulation with EXODUS V4 for the purpose of taking measures for passengers's life safety in subway fire. As a result of evacuation simulation without fire, evacuation times are 36 s for EXODUS V4 and simple hand calculation, and when fire is occurred fire, 101 persons evacuated in 32 s. Therefore, a countermeasure of evacuation in subway carriage fire is required to repression of fire and emergency exit.

  • PDF

Simulation Analysis of Safety Evacuation in University Experiment Building

  • Tao Zhang;Ha-Sung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.218-226
    • /
    • 2024
  • According to the actual situation of a university, the emergency evacuation simulation is modeled based on the physical sign, evacuation speed and personnel ratio using the pathfinder software.The experimental construction export utilization rate is compared with the preliminary simulation scenario. The simulation results show that the utilization rate of evacuation stairs and evacuation exits is significantly improved.The optimized solution can provide the most effective evacuation passage, and the research results can provide the basis for the rational planning and management of evacuation passage in university experiment building.

Analysis of University Cafeteria Safety Based on Pathfinder Simulation

  • Zechen Zhang;Jaewook Lee;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.209-217
    • /
    • 2024
  • Recent years have seen a notable increase in fire incidents in university cafeterias, yet the social attention to these occurrences remains limited. Despite quick responses to these incidents preventing loss of life, the need for large-scale evacuation in such high foot traffic areas can cause significant disruptions, economic losses, and panic among students. The potential for stampedes and unpredictable damage during inadequate evacuations underscores the importance of fire safety and evacuation research in these settings. Previous studies have explored evacuation models in various university environments, emphasizing the influence of environmental conditions, personal characteristics, and behavioral patterns on evacuation efficiency. However, research specifically focusing on university cafeterias is scarce. This paper addresses this gap by employing Pathfinder software to analyze fire spread and evacuation safety in a university cafeteria. Pathfinder, an advanced emergency evacuation assessment system, offers realistic 3D simulations, crucial for intuitive and scientific evacuation analysis. The studied cafeteria, encompassing three floors and various functional areas, often exceeds a capacity of 1500 people, primarily students, during peak times. The study includes constructing a model of the cafeteria in Pathfinder and analyzing evacuation scenarios under different fire outbreak conditions on each floor. The paper sets standard safe evacuation criteria (ASET > RSET) and formulates three distinct evacuation scenarios, considering different fire outbreak locations and initial evacuation times on each floor. The simulation results reveal the impact of the fire's location and the evacuation preparation time on the overall evacuation process, highlighting that fires on higher floors or longer evacuation preparation times tend to reduce overall evacuation time.In conclusion, the study emphasizes a multifaceted approach to improve evacuation safety and efficiency in educational settings. Recommendations include expanding staircase widths, optimizing evacuation routes, conducting regular drills, strengthening command during evacuations, and upgrading emergency facilities. The use of information and communication technology for managing emergencies is also suggested. These measures collectively form a comprehensive framework for ensuring safety in educational institutions during fire emergencies.

A comparative Study for dispersion model in evacuation plan by using MAS-based evacuation simulation (MAS 기반 피난시뮬레이션을 이용한 분산대피 비교 연구)

  • Jang, Jae-Soon;Rie, Dong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Smoke is one of the most critical factor when escaping from the fire since it reduces visibility and interrupts finding emergency exit lights. Therefore, it is recommended that an evacuation simulation program should incorporate the smoke factor. In addition, it is suggested that the program should include not only the unilateral damage by the smoke but also the detour evacuation by risk communication. In this study, MAS (Multi Agent System)-based simulation program which incorporates the reduced walking speed by smoke and adopts the dispersion evacuation logic during escaping from the fire. To make comparison, a commercial evacuation program, Pathfinder was used. It was found that the simulation results of MAS (Multi Agent System)-based program is better than Pathfinder in terms of safe evacuation. It means that evacuation simulation need a additional evaluation categories that include not only quick evacuation time but also safe evacuee number.