• Title/Summary/Keyword: Fire analysis

Search Result 3,402, Processing Time 0.026 seconds

A Research for Identification Method of Sprayed Fire-Resistive Material by Thermal Analysis (열분석을 통한 내화 뿜칠재 일치성분석 연구)

  • Cho, Nam-Wook;Rie, Dong-Ho;Shin, Hyun-Jun
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.7-12
    • /
    • 2011
  • As recent buildings are getting more high-rise and larger, steel structures, not a reinforced concrete structure, for columns and beams among the main structural members in a building are being widely used. Steels used for the main members of a building are constructed with a fire-resistive structure by applying them with fire-resistive coatings. The introduction of a simple test method that can verify the performance of fire-resistive material constructed on a site without conducting a fire-resistant test(real scale fire test) is needed and this study derived a site analysis method possible to make a rapid and scientific analysis through the analysis of components (instrumental analysis) concerning tire-resistive materials. the possibility of application of it in analyzing congruence over site construction materials by recognizing it as a standard material after securing an inherent fingerprint area of tire-resistive materials of which performance was verified in the concrete through thermal analysis was proved through experiments. This research result can be minimize of casualties, who is harmed to building collapse according to structures fire.

The Analytical Study of Fire Properties in Atrium Space (아트리움 공간에 있어서 화재온도성상에 관한 이론해석)

  • 김화중;이지희;최금란;김경례
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.113-119
    • /
    • 1993
  • Atrium being on fire, the flame is spread vertically, the methods of fire protection and the standards of security are different respectively. Therefore, in the case of atrium, it has many problems on the fire protection and the application of statute according to the space properties. So it is important to analysis, atrium being on fire, fire properties to space properties. From these points of view, the purpose of this study is to analysis the fire properties of atrium .

  • PDF

A Study on Fire Safety Measure for Korean Utility Tunnels Based on Analysis of Fire Safety Performance for Utility Tunnel in Advanced Countries (해외 공동구의 방재성능분석을 통한 국내 공동구에 적합한 방재대책에 관한 연구)

  • 박형주;김상욱
    • Fire Science and Engineering
    • /
    • v.15 no.4
    • /
    • pp.71-77
    • /
    • 2001
  • The pipes and cables buried below ground which may have helped to improved city landscapes is becoming direct and indirect cause for various disaster in Korea due to potential possibility of fire. Various types of fire in utility tunnels should be analysed in order to improve its fire safety level, therefore mail problems and shortcomings are checked out as a result of this analysis. By performing both tunnel fire risk analysis and fire safety level comparison in advanced countries, effective measure and approach to required standardization may be presented to bath tunnel structure and its containing cables in order to diminished up to a desirable rate in a near future.

  • PDF

Structural Fire Analysis of a Composite Beam Protected by Fire-Resistant Materials (내화피복을 적용한 강합성보의 구조화재해석)

  • Jun Won Kang;Moon Soo Kang;Hyejin Yoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • This paper presents the effects of fire-resistant materials on the temperature and vertical deflection of a composite beam exposed to fire through nonlinear thermo-mechanical analysis. The fire was modeled using the standard fire curve proposed in American Society for Testing and Materials (ASTM) E119. Fire-resistant materials were modeled by reducing the heat transfer coefficient from the air layer to the beam. The temperature and vertical deflection of the uncoated composite beam were measured using a laboratory fire test, and the results of the structural fire analysis were verified through comparison with experimental results. By introducing the fire-resistance effect, the reduction in the temperature and deflection of the beam for the ASTM E119 standard fire can be reasonably estimated. Based on a case study of the heat transfer coefficient, the fire-resistant effect on the thermo-mechanical response of a composite beam in the event of a fire is presented.

Nonlinear Thermo-mechanical Analysis Considering Heat Flow under Fire Conditions (화재 열 유동을 고려한 구조물의 열응력해석)

  • Pak, Hongrak;Kang, Jun Won;Lee, Jinwoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.369-376
    • /
    • 2016
  • In this study, a numerical analysis framework for investigating the nonlinear behavior of structures under fire conditions is presented. In particular, analysis procedure combining fire-driven flow simulation and thermo-mechanical analysis is discussed to investigate the mechanical behavior of fire-exposed representative volume structures made of steel and concrete, respectively. First of all, fire-driven flow analysis is conducted using Fire Dynamics Simulator(FDS) in a rectangular parallelepiped domain containing the structure. The FDS simulation yields the time history of temperature on the surface of the structure under fire conditions. Second, mechanical responses of the fire-exposed structure with respect to prescribed uniformly distributed loads are calculated by a coupled thermo-mechanical analysis using the time-varying surface temperature as boundary conditions. Material nonlinearities of steel and concrete have been considered in the thermo-mechanical analysis. A series of numerical results are presented to demonstrate the feasibility of the multiphysics structural fire analysis for investigating the structural behavior under fire conditions.

A Study on the Fire Safety Plan for High-Rise Building Construction (초고층 건축물 건설공사 시 화재안전계획 수립에 관한 연구)

  • Ham, Eun-Gu;Jeong, Myeong-Jin;Lee, Myeong-Gu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.11a
    • /
    • pp.59-66
    • /
    • 2012
  • Recently buildings are constructed in larger and higher scales and becoming more complex. Every country in the world is competing to build high-rise buildings. Korea also has and is constructing high-rise buildings, like the 123story Jamsil Lotte Super Tower. However from small to large scale buildings and on construction sites there still are fire safety accidents that occur continuously. Therefore to improve fire safety plan, examining the actual fire safety management and understanding fire risk analysis Using Fire Modeling through Computer Simulation. Fire safety management plan related fire safety cases were collected an dan analyzed for the study. Also hazard analysis of High rise Buildings under fire compared with existing fire law sand regulations.

  • PDF

A Study on the Application of National Fire Investigation Data (국가 화재조사 자료 활용에 관한 연구)

  • Kim, In-Tae
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.105-109
    • /
    • 2006
  • Fire station is a response agency of disaster management. Its various field experience and materials could build up to database to support fire prevention and fire fighting, but it has not been worked out efficiently. To overcome this inefficiency, National Emergency Management Agency(NEMA) has made total improvement in "National Fire Investigation Data Classification System" mainly done by its Fire Investigation and Analysis Team. This study reviews existing fire investigation and data accumulation and analysis process so that it could be used as a basic data for "National Fire Investigation Data Classification System" operation.

A Numerical Analysis for Fire Spread Mechanism of Residential Building Fire (주거용 건축물의 화염전파 현상에 대한 수치해석적 검토)

  • Ahn, Chan-Sol;Kim, Heung-Youl;You, Yong-Ho;Kim, Hyung-Jun
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.31-37
    • /
    • 2012
  • This study is intended to present a computational thermal model for a residential building. As the Performance Based Design is more popular, fire-intensity and fire-load have turned out to be very important factors for building design and can be predicted through some computational work. To predict and estimate the fire properties of a residential fire, we made some numerical models of combustibles and residential building. In a bid to validate the estimate values, computational analysis results from numerical models were compared with real fire tests. For computational analysis, the Fire Dynamics Simulator (FDS) was used with Large Eddy Simulation (LES) model for turbulence. Consequently, fire-intensity was well predicted and flash-over of rooms were successfully estimated.

STRUCTURAL TEST AND ANALYSIS OF RC SLAB AFTER FIRE LOADING

  • Chung, Chul-Hun;Im, Cho Rong;Park, Jaegyun
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.223-236
    • /
    • 2013
  • In the present study the behavior of fire and the residual strength of fire-ignited RC slabs are investigated by experimental tests and numerical simulations. The fire tests of RC slabs were carried out in a furnace using the ISO 834 standard fire. The load capacity of the cooled RC slabs that were not loaded during the fire tests was evaluated by additional 3 point bending tests. The influence of the proportion of PP (polypropylene) fibers in the RC slabs on the structural behavior of the RC slabs after the fire loading was investigated. The results of the fire tests showed that the maximum temperature of concrete with PP fiber was lower than that of concrete without PP fiber. As the concrete was heated, the ultimate compressive strength decreased and the ultimate strain increased. The load-deflection relations of RC slabs after fire loading were compared by using existing stress-strain-temperature models. The comparison between the numerical analysis and the experimental tests showed that some numerical analyses were reliable and therefore, can be applied to evaluate the ultimate load of RC slabs after fire loading. The ultimate load capacity after cooling down the RC slabs without PP fiber showed a considerable reduction from that of the RC slabs with PP fiber.

A case study of fire risk analysis for train coach without gangway doors (철도차량 화재위험도 평가 사례 분석)

  • Lee, Duck-Hee;Kim, Chi-Hun;Kim, Jeong-Hun;Park, Won-Hee;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.2232-2241
    • /
    • 2010
  • A case study of fire risk analysis was conducted for train coach which has no gangway doors between coaches. The analysis boundary was limited to the time of outgoing from the coaches for it was train fire risk analysis. ASET(available safe egress time) and RSET(required safe egress time) methodology was used for calculating the dead. 4 liters of gasoline and cable fire at the electric cabinet and the standard fire of EN 45545 were selected for the fire sources. The fire were considered to be occurred at 3 different locations in the car. The train had 3 cases of driving scenarios. The result of all event was summarized for remained tunnel and station egress step.

  • PDF