• Title/Summary/Keyword: Fire analysis

Search Result 3,430, Processing Time 0.029 seconds

Temperature-time analysis for steel structures under fire conditions

  • Wong, M.B.;Ghojel, J.I.;Crozier, D.A.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.275-289
    • /
    • 1998
  • The objective of the paper is to present a method whereby the time required for a steel structure to sustain the effects of a prescribed temperature rise according to real fire curves can be calculated. The method is divided into two parts. The first part deals with the post-yield behaviour of steel structures at elevated temperatures. It takes into account the variation of the properties of steel material with temperature in an incremental elastoplastic analysis so that the safety factor of the structure under certain fire conditions can be assessed. The second part deals with the heat transfer problem of bare steel members in real fire. Factors affecting the heat transfer process are examined and a model for predicting the temperature variation with time under real fire conditions is proposed. This model results in more accurate temperature predictions for steel members than those obtained from previously adopted model.

An Study on Heat Transfer Analysis to Concrete PC Pannel Lining under Tunnel Fire Scenario (터널 화재시나리오에 따른 콘크리트 PC패널 라이닝의 전열특성에 관한 해석적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hoon;Shin, Hyun-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.487-492
    • /
    • 2009
  • This study was performed FE numerical analysis under 120-minute fire conditions, using the ABAQUS, a wide use software, on the basis of the test results by concrete tunnel lining fire strengths (ISO, RWS, and MHC). The concrete material test was to secure the material properties of concrete linings, which were numerical analysis input conditions. And then built the material properties, such as specific heat, heat transfer rate, heat expansion rate, density, elasticity coefficient and compression strength under high temperature conditions, as database at 20 $^{\circ}C$ to 800 $^{\circ}C$, applying them to analysis as input values. As a result, the tunnel linings under RWS fire conditions saw fire temperature rose to maximum 1119 $^{\circ}C$at the location of 5 mm above a thermal surface, and saw surface temperature amount to 1214 $^{\circ}C$ in the middle part.

  • PDF

Numerical data-driven machine learning model to predict the strength reduction of fire damaged RC columns

  • HyunKyoung Kim;Hyo-Gyoung Kwak;Ju-Young Hwang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.625-637
    • /
    • 2023
  • The application of ML approaches in determining the resisting capacity of fire damaged RC columns is introduced in this paper, on the basis of analysis data driven ML modeling. Considering the characteristics of the structural behavior of fire damaged RC columns, the representative five approaches of Kernel SVM, ANN, RF, XGB and LGBM are adopted and applied. Additional partial monotonic constraints are adopted in modelling, to ensure the monotone decrease of resisting capacity in RC column with fire exposure time. Furthermore, additional suggestions are also added to mitigate the heterogeneous composition of the training data. Since the use of ML approaches will significantly reduce the computation time in determining the resisting capacity of fire damaged RC columns, which requires many complex solution procedures from the heat transfer analysis to the rigorous nonlinear analyses and their repetition with time, the introduced ML approach can more effectively be used in large complex structures with many RC members. Because of the very small amount of experimental data, the training data are analytically determined from a heat transfer analysis and a subsequent nonlinear finite element (FE) analysis, and their accuracy was previously verified through a correlation study between the numerical results and experimental data. The results obtained from the application of ML approaches show that the resisting capacity of fire damaged RC columns can effectively be predicted by ML approaches.

An Investigation of Fire Human Reliability Analysis (HRA) Factors for Quantification of Post-fire Operator Manual Actions (OMA) (화재 후 운전원수동조치(OMA) 정량화를 위한 화재 인간신뢰도분석 (HRA) 요소에 대한 고찰)

  • Sun Yeong Choi;Dae Il Kang;Yong Hun Jung
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.6
    • /
    • pp.72-78
    • /
    • 2023
  • The purpose of this paper is to derive a quantified approach for Operator Manual Actions (OMAs) based on the existing fire Human Reliability Analysis (HRA) methodology developed by the Korea Atomic Energy Research Institute (KAERI). The existing fire HRA method was reviewed, and supplementary considerations for OMA quantification were established through a comparative analysis with NUREG-1852 criteria and the review of the existing literature. The OMA quantification approach involves a timeline that considers the occurrence of Multiple Spurious Operations (MSOs) during a Main Control Room Abandonment (MCRA) determination and movement towards the Remote Shutdown Panel (RSP) in the event of a Main Control Room (MCR) fire. The derived failure probability of an OMA from the approach proposed in this paper is expected to enhance the understanding of its reliability. Therefore, it allows moving beyond the deterministic classification of "reliable" or "unreliable" in NUREG-1852. Also, in the event of a nuclear power plant fire where multiple OMAs are required within a critical time range, it is anticipated that the OMA failure probability could serve as a criterion for prioritizing OMAs and determining their order of importance.

A Study on Remote Analysis of Fire Gas Using Open Path FT-IR (개방형 적외선분석기를 사용한 원거리 화재발생가스 측정에 관한 연구)

  • Cho, Nam-Wook;Lee, In-Gu;Lee, Jong-Cheon
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.39-45
    • /
    • 2013
  • The gas generated from the fire which is continuous until material is completely burned. We can analyze usual gas using chromatography analysis but it can not be applicated to analyze for the gas from the fire because which gas is enormously generated. Besides, chromatography analysis has the disadvantage that it can not continuously analyze the sample's representativness, gas from the fire, Fourier transform infrared spectroscopy, FT-IR, has been utilized for effective combustion gas analysis method in small-scale combustion and on-line analysis has been attempted continuously. However, continuous sampling of 3.5l/min can not be representativness of sample if the gas caused by a massive fire and space. And the gas sampling is practically impossible in such a case. In this study, we attempted remote analysis while overcoming the disadvantages of the current gas analysis by using an Open-Path Infrared Analyzer without pre-treatment of the sampling. For the remote analysis, quantitative analysis method was established regarding each combustion toxic gases. And we measured the gases from the fire that occurs in the real case.

The Development of Fire Detection System Using Fuzzy Logic and Multivariate Signature (퍼지논리 및 다중신호를 이용한 화재감지시스템의 개발)

  • Hong, Sung-Ho;Kim, Doo-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.49-55
    • /
    • 2004
  • This study presents an analysis of comparison of P-type fire detection system with fuzzy logic-applied fire detection system. The fuzzy logic-applied fire detection system has input variables obtained by fire experiment of small scale with K-type temperature sensor and optical smoke sensor. And the antecedent part of fuzzy rules consists of temperature and smoke density, and the consequent part consists of fire probability. Also triangular fuzzy membership function is used for input variables and fuzzy rules. To calculate the final fire probability a centroid method is introduced. A fire experiment is conducted with controlling wood crib layer, cigarette to simulate actual fire and false alarm situation. The results show that peak fire probability is 25[%] for non-fire and is more than 80[%] for fire situation, respectively. The fuzzy logic-applied fire detection system suggested here is able to distinguish fire situation and non-fire situation very precisely.

Study on Fire Safety Test Method for the Bed Mattress (침대 매트리스에 대한 화재 안전성 평가 연구)

  • Park, Kye-Won;Jeong, Jae-Gun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.197-200
    • /
    • 2011
  • This study aims to inform of current situation related to fire safety performance regulation on bed mattress in domestic and foreign countries, and even to make a slight analysis report on heat release rate of bed mattress based on preliminary KICT study which has comparison data together with several items inside house.

  • PDF

A Study on the Fire Resisting Properties of Reinforced Concrete Structures (철근콘크리트 구조물의 내화성능에 관한 연구)

  • 김무한;송하영
    • Fire Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.3-10
    • /
    • 1988
  • Concrete is incombustible and has good fire resisting properties, i. e. when exposed to fire it continues to perform satisfactorily for a reasonable period of time. Nevertheless, with time and high temperature gradient, brought about the fire, causes cracking and spatting. Further deterioration and loss of strength are caused by gradual dehydration of concrete paste. This paper is aimed to make a proposal for the design and construction of reinforced concrete structures with more sufficent resistance to fire by the theoritical analysis, which is base4 on investigation of general damages by the fire and change of properties on concrete influenced by high temperature.

  • PDF