• Title/Summary/Keyword: Fire Sensor

Search Result 423, Processing Time 0.023 seconds

Development of Fire-Diagnosis Concrete using Composite Sensors (복합센서를 이용한 화재자현 콘크리트의 개발)

  • Choi, Young-Wha;Kim, Ie-Sung;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.4
    • /
    • pp.85-92
    • /
    • 2010
  • Use of concrete has undoubtedly become widespread in construction and civil engineering. Sensors are used to add functional characteristics to concrete. Self-diagnosis concrete is also being developed. The thermal protector used in the study is a sensor using the linear expansion and cubical expansion of metal. The LED(Light Emitting Diode) is a phototransistor type, and to secure high-sensitivity light, the prices of these sensors are low. Rising temperatures of concrete elements can be predicted from LED of the external virtual beam due to operation of thermal protector sensors of concrete beam caused by fire load on the concrete specimen. In this study, the development of fire-diagnosis concrete using composite sensors are the fundamental study for damage detection using simply measurements.

  • PDF

The shelter course guidance system using a sensor network (센서 네트워크를 이용한 대피경로 안내시스템)

  • Kwon, Jung-Il;Roh, Young-Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.5
    • /
    • pp.237-246
    • /
    • 2008
  • When a fire occurs in a large-scale or complicated facility there is a possibility of large-scale loss of life if there is no information on the location of fire and the location of emergency exits for people to take shelter. Consequently, the fire or disaster prevention system and the shelter course guidance system that optimally guides the shelter course are necessary to reduce the loss of life. This paper proposes a shelter course guidance system using a sensor network to reduce the loss of life in a building where a fire occurs. The experimental result of this research shows that the shelter course guidance system provides the optimum shelter course to people in infrastructure when a fire occurs.

  • PDF

A Study on a Development of Automated Measurement Sensor for Forest Fire Surface Fuel Moistures (산불연료습도 자동화 측정센서 개발에 관한 연구)

  • YEOM, Chan-Ho;LEE, Si-Young;PARK, Houng-Sek;WON, Myoung-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.917-935
    • /
    • 2020
  • In this study, an automated sensor to measure forest fire surface fuel moistures was developed to predict changes in the moisture content and risk of forest fire surface fuel, which was indicators of forest fire occurrence and spread risk. This measurement sensor was a method of automatically calculating the moisture content of forest fire surface fuel by electric resistance. The proxy of forest fire surface fuel used in this sensor is pine (50 cm long, 1.5 cm in diameter), and the relationship between moisture content and electrical resistance, R(R:Electrical resistance)=2E(E:Exponent of 10)+13X(X:Moisture content)-9.705(R2=0.947) was developed. In addition, using this, the software and case of the automated measurement sensor for forest fire surface fuel moisture were designed to produce a prototype, and the suitability (R2=0.824) was confirmed by performing field monitoring verification in the forest. The results of this study would contribute to develop technologies that can predict the occurrence, spread and intensity of forest fires, and are expected to be used as basic data for advanced forest fire risk forecasting technologies.

Design and construction of a new ultraviolet sensor using CsI deposition in the ionization chamber

  • Souri, R.;Negarestani, A.;Souri, S.;Farzan, M.;Mahani, M.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.5
    • /
    • pp.751-757
    • /
    • 2018
  • In this article, a UV sensor that is an appropriate tool for fire detection has been designed and constructed. The structure of this UV sensor is an air-filled single-wire detector that is able to operate under normal air condition. A reflective CsI photocathode is installed at the end of the sensor chamber to generate photoelectrons in the ion chamber. An electric current is produced by accelerating photoelectrons to the anode in the electric field. The detector is able to measure the intensity of the incident UV rays whenever the current is sufficiently high. Therefore, the sensitivity coefficient of this sensor is found to be $7.67{\times}10^{-6}V/photons/sec$.

Development of Emergency Exit Guidance Lamps using the Characteristics of Each Sensor in Case of Fire (화재 발생 시 센서별 특성을 이용한 비상구 유도등 개발)

  • Kim, Jong-Kwan;Jeong, Do-Hyeon;Yu, Yong-Woo;Yang, Min-Hyeok;Lee, Boong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1019-1028
    • /
    • 2021
  • Emergency exit guidance lights were designed and manufactured to quickly determine the location of the emergency exit in the event of a fire using a gas sensor, an illumination sensor, a temperature sensor, an Arduino Uno, and a Bluetooth module. This research was designed such that, when a fire breaks out, a red arrow appears as the illuminance value is low and a green arrow as the illuminance value is high to improve visibility when detecting high temperature and smoke. In addition, it is designed to prevent more serious conflagration by applying an alarm sound and text transmission algorithm using a communication module to transmit text messages indicating a 174Hz alarm sound and a fire location to prevent more serious conflagration.

Visual Sensing of Fires Using Color and Dynamic Features (컬러와 동적 특징을 이용한 화재의 시각적 감지)

  • Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.211-216
    • /
    • 2012
  • Fires are the most common disaster and early fire detection is of great importance to minimize the consequent damage. Simple sensors including smoke detectors are widely used for the purpose but they are able to sense fires only at close proximity. Recently, due to the rapid advances of relevant technologies, vision-based fire sensing has attracted growing attention. In this paper, a novel visual sensing technique to automatically detect fire is presented. The proposed technique consists of multiple steps of image processing: pixel-level, block-level, and frame level. At the first step, fire flame pixel candidates are selected based on their color values in YIQ space from the image of a camera which is installed as a vision sensor at a fire scene. At the second step, the dynamic parts of flames are extracted by comparing two consecutive images. These parts are then represented in regularly divided image blocks to reduce pixel-level detection error and simplify following processing. Finally, the temporal change of the detected blocks is analyzed to confirm the spread of fire. The proposed technique was tested using real fire images and it worked quite reliably.

A Study on the Smart Fire Detection System using the Wireless Communication (무선통신을 이용한 스마트 화재감지 시스템에 관한 연구)

  • Chung, Byoung-Chan;Na, Wonshik
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.3
    • /
    • pp.37-41
    • /
    • 2016
  • In this paper, we propose a fire alarm system that utilizes Wi-Fi to alarm multiple people at once. This system, based on Arduino, uses smoke, flame and temperature sensor units to sense fire and send detection data to a server via wireless communication system. The server uses stored data to relay current fire situations gathered from nearby sensors to smartphones. It also automatically reports the fire using location data from sensors. Using this system, we were able to retrieve fire alarm from sensors via push notification of our smartphone. We also confirmed the establishment of linkage with sensors and automatic report of fire via SMS. From this result, the possibility of sending real-time notifications via the Internet toward nearby smartphones about disasters such as conflagration has been proven to be feasible.

Realtime Wireless Sensor Line Protocol for Forest Fire Monitoring System (실시간 센서 네트워크 프로토콜을 이용한 산불 모니터링 시스템의 구현)

  • Kim, Jae-Ho;Lee, Sang-Shin;Ahn, Il-Yeup;Kim, Tae-Hyun;Won, Kwang-Ho;Kim, Seong-Dong
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.1031-1034
    • /
    • 2005
  • This paper introduces a novel sensor network protocol, R-WSLP(Realtime Wireless Sensor Line Protocol), which has extremely low latency characteristic in large-scale WSN. R-WSLP is proposed to implement realtime forest fire monitoring system. We propose Distributed TDMA method for the multiple channel access and Time Synchronized Forwarding Mechanism instead of routing technique to achieve low latency network. Also, R-WSLP provides extremely low power operation which we accomplished by reducing idle listening. In our experimentation, we get successful results at the forest fire monitoring system with our protocol.

  • PDF

Performance Improvement of CO Sensor Signal Conditioner for Early Fire Detection System (조기화재 감시시스템을 위한 CO센서의 시그널컨디셔너 성능개선)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.2
    • /
    • pp.82-87
    • /
    • 2017
  • This paper presents performance improvement of CO gas sensor signal conditioner for early fire warning system. The warning system is based on the CO sensor and its advanced signal conditioning modules network that employ electochemical gas sensor. The electochemical has advantage of having a linear output and operating with a low consumption and fast response. This electrochemical gas sensor contains a gas membrane and three electrodes(working, counter, reference electrode) in contact with an electrolyte. To use a three-electrode sensor, a voltage has to be applied between the working and the reference electrode according to the specification of the sensor. In this paper, we designed these requirements that should be considered in temperature compensation algorithm and electrode measurement of CO sensor modules by using advanced signal conditioning method included 3-electrode. Simulation and experimental results show that signal conditioner of CO sensor module using 3-electrode have a advantage linearity, sensitivity and stability, fast response etc..

Performance Evaluation of a Smart CoAP Gateway for Remote Home Safety Services

  • Kim, Hyun-Sik;Seo, Jong-Su;Seo, Jeongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3079-3089
    • /
    • 2015
  • In this paper, a smart constrained application protocol (CoAP)-based gateway with a border router is proposed for home safety services to remotely monitor the trespass, fire, and indoor air quality. The smart CoAP gateway controls a home safety sensor node with a pyroelectric infrared motion sensor, a fire sensor, a humidity and temperature sensor, and a non-dispersive infrared CO2 sensor and gathers sensing data from them. In addition, it can convert physical sensing data into understandable information and perform packet conversion as a border router for seamless connection between a low-power wireless personal area network (6LoWPAN) and the Internet (IPv6). Implementation and laboratory test results verify the feasibility of the smart CoAP gateway which especially can provide about 97.20% data throughput.