• Title/Summary/Keyword: Fire Scenario

Search Result 241, Processing Time 0.02 seconds

Survey of the Need for the Development of a Simulated Training Program that Reproduces Automobile Accidents (자동차 사고를 재현한 시뮬레이션 교육 프로그램 개발을 위한 요구도 조사)

  • Kang, Min-Ju
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.179-187
    • /
    • 2019
  • This study performed a survey on the need for an automobile accident-simulation training program for 60 emergency workers and nine emergency medical professors. The results showed that the need for cervical spine immobilization use was highest (76.8%) in first-aid requiring simulation training, and the need for head injury was highest (75.4%) in the scenario requiring simulation training. Based on the 43-month working experience of emergency workers, the uses of pneumatic anti-shock garment, KED, and the need for rapid extrication were significantly different between the two groups (p=0.01, p=0.05). In addition, the scenario showed statistically significant differences in the need for face, abdomen, and other injuries in both group (p=0.05, p=0.04, p=0.03). The needs of emergency workers and emergency medical professors for an automobile accident simulation-training program were high, and the development of a simulation program is needed.

A Study on the Activity and Training Plan of a Field Crew for the Design of Training Scenarios Assuming Chemical Accidents and Terrorism (화학사고·테러를 가정한 훈련 시나리오 설계를 위한 현장 대원의 활동성 분석과 훈련방안에 관한 연구)

  • Kim, Si-Kuk;Choi, Su-Gil;Hong, Sung-chul
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.72-85
    • /
    • 2020
  • This article is a study on the activity of rescue workers for designing simulation training scenarios assuming chemical accidents. On the basis of the complexity of the indoor scene in the case of chemical accidents and terrorism, we designed a 12-step simulation training scenario for two teams to analyze the improvement in firefighters' capabilities. On the basis of activity measurement in the simulation scenario, step 2 of training had the most drops in the maximum heart rate, as follow: N1, from 163 bpm to 153 bpm; N2, from 186 bpm to 151 bpm; N3, from 168 bpm to 162 bpm; and N4, from 166 bpm to 152 bpm. In terms of intensity level in the allowable activity time, it was found that in step 2 both N1 and N2 reduced from Level 5 to Level 3, N3 remained at Level 4, N4 reduced from Level 4 to Level 3, and the maximum allowable activity time increased.

MARYBLYT Study for Potential Spread and Prediction of Future Infection Risk of Fire Blight on Blossom of Singo Pear in Korea (우리나라 신고배 화상병 꽃감염 확산 가능성 및 미래 감염위험 예측을 위한 MARYBLYT 연구)

  • Kim, Min-Sun;Yun, Sung-Chul
    • Research in Plant Disease
    • /
    • v.24 no.3
    • /
    • pp.182-192
    • /
    • 2018
  • Since fire blight (Erwinia amylovora) firstly broke out at mid-Korea in 2015, it is necessary to investigate potential spread of the invasive pathogen. To speculate environmental factors of fireblight epidemic based on disease triangle, a fire blight predicting program, MARYBLYT, was run with the measured meteorological data in 2014-2017 and the projecting future data under RCP8.5 scenario for 2020-2100. After calculating blossom period of Singo pear from phenology, MARYBLYT was run for blossom blight during the blossom period. MARYBLYT warned "Infection" blossom blight in 2014-15 at Anseong and Cheonan as well as Pyungtak and Asan. In addition, it warned "Infection" in 2016-17 at Naju. More than 80% of Korean areas were covered "Infection" or "High", therefore Korea was suitable for fire blight recently. Blossom blight for 2020-2100 was predicted to be highly fluctuate depending on the year. For 80 years of the future, 20 years were serious with "Infection" covered more than 50% of areas in Korea, whereas 8 years were not serious covered less than 10%. By comparisons between 50% and 10% of the year, temperature and amount of precipitation were significantly different. The results of this study are informative for policy makers to manage the alien pathogen.

On Multiple ETA-based Test Framework to Enhance Safety Maturity of Live Fire Tests for Weapon Systems (무기체계 실사격 시험의 안전성 강화를 위한 다중 사건나무분석 기반의 시험구조에 관한 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Successful development of weapon systems requires a stringent verification and validation (V&V) process due to the nature of the weapons in which continual increase of operational capability makes the system requirements more complicated to meet. Thus, test and evaluation (T&E) of weapon systems is becoming more difficult. In such a situation, live fire tests appear to be effective and useful methods in not only carrying out V&V of the weapon systems under development, but also increasing the maturity of the end users operability of the system. However, during the process for live fire tests, a variety of accidents or mishaps can happen due to explosion, pyro, separation, and so on. As such, appropriate means to mitigate mishap possibilities should be provided and applied during the live fire tests. To study a way of how to accomplish it is the objective of this paper. To do so, top-level sources of hazard are first identified. A framework for T&E is also described. Then, to enhance the test range safety, it is discussed how test scenarios can be generated. The proposed method is based on the use of the anticipatory failure determination (AFD) and multiple event tree analysis (ETA) in analyzing range safety. It is intended to identify unexpected hazard components even in the environment with constraints. It is therefore expected to reduce accident possibilities as an alternative to the traditional root-cause analysis.

Study on the Fire Safety Estimation for a Pilot LNG Storage Tank (PILOT LNG저장탱크의 화재안전성 평가에 관한 연구)

  • 고재선;김효
    • Fire Science and Engineering
    • /
    • v.18 no.3
    • /
    • pp.57-73
    • /
    • 2004
  • Quantitative safety analysis through a fault tree method has been conducted for a fire broken out over the spilling LNG from a pilot LNG tank, which may have 4 types of scenarios causing potentially risky results. When we consider LNG release from venting pipelines as a first event, any specific radius of Low Flammable Limit(LFL) has not been built up. The second case of LNG outflow from the rupture of storage tank which will be the severest has been analyzed and the results revealed various diffusion areas to the leaking times even with the same amount of LNG release. As a third case LNG leakage from the inlet/outlet pipelines was taken into consider. The results showed no significant differences of LFL radii between the two spilling times of 10 and 60 minutes. Hence, we have known the most affecting factor on the third scenario is an initial amount of LNG release. Finally, the extent of LFL was calculated when LNG pipelines around the dike area were damaged. In addition, consequence analysis has been also performed to acquire the heat radiation and flame magnitude for each case.

The effect of a risk factor on quantitative risk assessment in railway tunnel (철도터널에서 위험인자가 정량적 위험도 평가에 미치는 영향)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.117-125
    • /
    • 2015
  • Quantitative risk assessment (QRA) of railway is to create a variety of scenario and to quantify the degree of risk by a result of the product of accident frequency and accident. Quantitative risk Assessment is affected by various factors such as tunnel specifications, characteristics of the fire, and relation of smoke control and evacuation direction. So in this study, it is conducted that how the way of smoke control and the relation of smoke control and evacuation direction affect quantitative risk assessment with variables (the tunnel length (2, 3, 4, 5, 6 km) and the slope (5, 15, 25‰)). As the result, in a train fire at the double track tunnel (Area = $97m^2$), it is most efficient to evacuate to the opposite direction of smoke control regardless of the location of train in train fire. In addition, under the same condition, index risk in mechanical ventilation up to 1/10.

The Effect of the Combined Operation of Sprinkler and Vent Systems on the Smoke Control in a Horizontal Corridor (스프링클러와 배연설비의 통합작동이 수평통로의 연기제어에 미치는 영향)

  • Jeon Heung-Kyun;Choi Young-Sang;Choo Hong-Lok;Jang Jun-Young
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.70-89
    • /
    • 2005
  • Fire scenarios in a space $20.0m\;\times\;4.0m$ floor and 3.0m high were simulated by using computational fluid dynamics program (FDS 4.0.3) to investigate the effect of the combined operation of both sprinkler and vent systems, which are installed for cooling and blocking smoke which propagates beneath the ceiling of a horizontal corridor, on the temperature and smoke density of it. It was shown that the combined operation both sprinkler and vent systems was more effective than each operation for cooling and blocking smoke, the number of operating sprinklers was two because of corner effect of wall, and over-installed sprinklers deteriorated the effect of cooling and blocking smoke. This study showed that the case of two sprinklers and vent flow rate $3.0m^3/s$ in fire scenario was the most effective for cooling and blocking smoke. It was confirmed that the smoke downdrag occurs in operating sprinkler system, and the more smoke droplets produced by increasing fire size, the greater smoke downdrag occurred.

Process Hazard Review and Consequence Effect Analysis for the Release of Chlorine Gas from Its Storage Tank (염소저장탱크에서의 가스 누출시 공정위험검토 및 결과영향분석)

  • Ko, Jae-Sun;Kim, Hyo
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.61-73
    • /
    • 2003
  • Most of the accidents occurred from the chemical plants are related to the catastrophic gas release events when the large amount of toxic materials is leaked from its storage tank or transmitting pipe lines. In this case, the greatest concerns are how the spreading behaviors of leakages are depended on the ambient conditions such as air stability and other environmental factors. Hence, we have focused on the risk assessments and consequential analysis for chlorine as an illustrative example. As appeared in the result, Fire & Explosion Index depicted it a bit dangerous with presenting the comprehensive degrees of hazard 90.7. And as a result of Phast6.0/ALOHA, the trends of each scenario appeared considerably identical although there are some differences in the resulting effects according to the input data for the Gas Model. The consequence analysis is performed numerically based on the dense gas mode. In the future, using more correct input data, material properties, and topographical configuration, the method of this research will be useful for the guideline of the risk assessment when the release of toxicants breaks out.

On an Enhanced Model of System Readiness Level by Incorporating Safety for the Development of Live Fire Test Systems (실사격 시험시스템의 효율적인 개발을 위해 안전도 반영을 통해 개선된 시스템 성숙도 모델에 관한 연구)

  • Ye, Sung Hyuck;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.3
    • /
    • pp.195-204
    • /
    • 2015
  • The live fire test has been playing a critical role in evaluating the goals-to-meet of the weapon systems which utilize the power of explosives. As such, the successful development of the test systems therein is quite important. The test systems development covers that of ranges and facilities including system-level key components such as mission control, instrumentation or observation, safety control, electric power, launch pad, and so on. In addition, proper operational guidelines are needed with well-trained test and operation personnel. The emerging weapon systems to be deployed in future battle field would thus have to be more precise and dynamic, smarter, thereby requiring more elaboration. Furthermore, the safety consideration is becoming more serious due to the ever-increasing power of explosives. In such a situation, development of live fire test systems seems to be challenging. The objective of the paper is on how to incorporate the safety and other requirements in the development. To achieve the goal, an architectural approach is adopted by utilizing both the system components relationship and safety requirement when advanced instrumentation technology needs to be developed and deteriorated components of the range are replaced. As an evaluation method, it is studied how the level of maturity of the test systems development can be assessed particularly with the safety requirement considered. Based on the concepts of both systems engineering and SoS (System-of-Systems) engineering process, an enhanced model for the system readiness level is proposed by incorporating safety. The maturity model proposed would be helpful in assessing the maturity of safety-critical systems development whereas the costing model would provide a guide on how the reasonable test resource allocation plan can be made, which is based on the live fire test scenario of future complex weapon systems such as SoS.

Derivations of Positive Pressure Condition for Development of Foldable Safe Pathway in Railway Tunnel Fires (철도터널화재용 접이식 대피통로 개발을 위한 양압 조건 도출)

  • Kim, JiTae;Ro, Kyoungchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.284-289
    • /
    • 2019
  • The Korea Foldable safe pathway system is an evacuation support system to get temporary evacuation route in railway tunnel and large space fires. A prevention smoke screen is unfolded in fires and it is needed to prevent heat and smoke from fire source. Therefore, ventilation system for positive pressure condition is equipped with foldable safe pathway system. Numerical analyses of temperature and pressure distribution with distance from fire source were performed considering fire scenario of new train vehicle. The smoke temperatures did not exceed $200^{\circ}C$ that distance from the fire source was more than 20 m and smoke pressure was reduced with distance from fire source. Maximum smoke pressure was 14 Pa and average pressure was 6 Pa in position of prevention smoke screen. As results, to install foldable safe pathway system, ventilation system is need to maintain 6 Pa positive pressure condition.