• Title/Summary/Keyword: Fire Power Potential

Search Result 41, Processing Time 0.026 seconds

Repurposing a Spent Nuclear Fuel Cask for Disposal of Solid Intermediate Level Radioactive Waste From Decommissioning of a Nuclear Power Plant in Korea

  • Mah, Wonjune;Kim, Chang-Lak
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.365-369
    • /
    • 2022
  • Operating and decommissioning nuclear power plants generates radioactive waste. This radioactive waste can be categorized into several different levels, for example, low, intermediate, and high, according to the regulations. Currently, low and intermediate-level waste are stored in conventional 200-liter drums to be disposed. However, in Korea, the disposal of intermediate-level radioactive waste is virtually impossible as there are no available facilities. Furthermore, large-sized intermediate-level radioactive waste, such as reactor internals from decommissioning, need to be segmented into smaller sizes so they can be adequately stored in the conventional drums. This segmentation process requires additional costs and also produces secondary waste. Therefore, this paper suggests repurposing the no-longer-used spent nuclear fuel casks. The casks are larger in size than the conventional drums, thus requiring less segmentation of waste. Furthermore, the safety requirements of the spent nuclear fuel casks are severer than those of the drums. Hence, repurposed spent nuclear fuel casks could better address potential risks such as dropping, submerging, or a fire. In addition, the spent nuclear fuel casks need to be disposed in compliance with the regulations for low level radioactive waste. This cost may be avoided by repurposing the casks.

Analysis of the Causes of Accidents Related to 3 Phase 170 kV Gas Insulated Switchgears(GIS) and Preventive Measures (3상 170 kV 가스절연개폐장치(GIS)의 사고 원인 분석 및 예방 대책)

  • Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.41-46
    • /
    • 2011
  • The purpose of this paper is to analyze the causes of accidents related to the 3 phase 170 kV gas insulated switchgear of a power system collected from accident sites to secure data for the prevention of similar accidents and provide important points of view regarding diagnosis for the prevention of accidents involving gas insulated switchgears. The analysis results of the causes of accidents involving gas insulated switchgears showed deformation of the manipulation lever installed at the S-phase, disconnection of the insulation rod connection, melting of the upper conductor, a damaged tulip, damage to the lower spacer and the spacer at the breaker, etc. It is believed from this result that the potential for accidents has expanded due to accumulated energy as a result of repeated deterioration. The carbonization depth of a GIS was formed near the screw (T2, T3) used to secure the lower pole of the S-phase tulip. It is not known what has caused the screws to be extruded and melted. However, it is thought that an unbalanced electromagnetic force, micro-discharge, surface discharge, etc., have occurred at that point. In addition, even though 16 years have passed since its installation, there was no installation defect, act of arson, accidental fire, etc. General periodical inspection and diagnosis failed to find the factors causing the accidents. As a system contained in a closed metal container, it has a high risk factor. Therefore, it is necessary to design, install and operate a GIS in accordance with the standard operational procedure (SOP). In addition, it is necessary to apply conversion technology for periodical SF6 gas analysis and precision safety diagnosis. It is expected that tracking and managing these changes in characteristics by recording the results on the history card will provide a significant accident prevention effect.

Effects of Auditory Warning Types on Response Time and Accuracy in Ship Bridges (선교내에서 청각경보음의 유형이 반응속도와 정확성에 미치는 영향)

  • Ha, Wook-Hyun;Park, Sung-Ha;Kim, Hong-Tae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.673-680
    • /
    • 2010
  • The effects of different auditory warnings on response time and accuracy were studied in a laboratory ship-bridge work environment. Subjective preference on the type of auditory warnings was also of a primary concern. Twenty five subjects were asked to select an appropriate button for the warning sound presented with three types of auditory warning (abstract sound, auditory icon, and voice alarm) and five levels of warning situation (fire, steering failure, collision, engine failure, and low power). Results showed that the response time and accuracy was significantly affected by the types of auditory warning. The voice alarm resulted in a higher accuracy and subjective preference, as compared to the auditory icon and abstract sound. Regarding the response time, auditory icons and voice alarms were equivalent and superior to abstract sounds. Actual or potential applications of this research include guidelines for the design of integrated ship bridge systems.

The Design and Performance Test of Mold Transformer for Outdoor Pole (50 kVA 주상용 몰드변압기의 설계 및 특성평가)

  • Cho, Han-Goo;Lee, Un-Yong;HwangBo, Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF

Analysis of Safety by Expansion of Hydrogen Charging Station Facilities (수소충전소 설비 증설에 따른 안전성 해석)

  • Park, Woo-Il;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.6
    • /
    • pp.83-90
    • /
    • 2020
  • This study conducted a risk assessment using the HyKoRAM program created by international joint research. Risk assessment was conducted based on accident scenarios and worst-case scenarios that could occur in the facility, reflecting design specifications of major facilities and components such as compressors, storage tanks, and hydrogen pipes in the hydrogen charging station, and environmental conditions around the demonstration complex. By identifying potential risks of hydrogen charging stations, we are going to derive the worst leakage, fire, explosion, and accident scenarios that can occur in hydrogen storage tanks, treatment facilities, storage facilities, and analyze the possibility of accidents and the effects of damage on human bodies and surrounding facilities to review safety.

Hazards of decomposition and explosion for Tert-butylperoxymaleate (터셔리부틸퍼옥시말레이트의 분해 및 폭발 위험성)

  • Lee, Jung-Suk;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, hazards of decomposition and explosion for tert-butylperoxymaleate(TBPM), an organic peroxide, were evaluated by using various equipment to determine the cause of a fire explosion accident. As a result of DSC analysis, the instantaneous power density of TBPM was 26,401 kW/ml, and the NFPA reactive index(Nr) was classified as 4. And the positive value of EP(explosive propagation) and SS(shock sensitivity) showed that the TBPM had a potential hazard of explosion. From the experimental results, the shock sensitivity and friction sensitivity was rated as class 4 and 5, respectively. In the pressure vessel test, TBPM was ranked USA-PVT No.4 and evaluated as a self-reactive substance. In the combustion rate test, TBPM had the combustion rate of 167 mm/sec and was evaluated as the flammable solid classification 2 in GHS.

A Study on the Safety Characterization Grounding Design of the Inner Photovoltaic System (태양광 발전단지 내부 그리드의 안전 특성화 접지 설계에 관한 연구)

  • Kim, Hong-Yong;Yoon, Suk-Ho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.2
    • /
    • pp.130-140
    • /
    • 2018
  • Purpose: In this paper, we propose a design technique for the safety characterization grounding in the construction of the photovoltaic power generation complex which can be useful and useful as an alternative power energy source in our society. In other words, we will introduce the application of safety grounding for each application, which can improve and optimize the reliability of the internal grid from the cell module to the electric room in the photovoltaic power generation complex. Method: We analyze the earth resistivity of the soil in the solar power plant and use the computer program (CDEGS) to analyze the contact voltage and stratospheric voltage causing the electric shock, and propose the calculation and calculation method of the safety ground. In addition, we will discuss the importance of semi-permanent ground electrode selection in consideration of soil environment. Results: We could obtain the maximum and minimum value of ground resistivity for each of the three areas of the data measured by the Wenner 4 - electrode method. The measured data was substituted into the basic equation and calculated with a MATLAB computer program. That is, it can be determined that the thickness of the minimum resistance value is the most favorable soil environment for installing the ground electrode. Conclusion: Through this study, we propose a grounding system design method that can suppress the potential rise on the ground surface in the inner grid of solar power plant according to each case. However, the development of smart devices capable of accumulating big data and a monitoring system capable of real-time monitoring of seismic changes in earth resistances and grounding systems should be further studied.

Analysis of Endophytic Bacterial Communities and Investigation of Core Taxa in Apple Trees

  • Yejin Lee;Gyeongjun Cho;Da-Ran Kim;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • v.39 no.4
    • /
    • pp.397-408
    • /
    • 2023
  • Fire blight disease, caused by Erwinia amylovora, is a devastating affliction in apple cultivation worldwide. Chemical pesticides have exhibited limited effectiveness in controlling the disease, and biological control options for treating fruit trees are limited. Therefore, a relatively large-scale survey is necessary to develop microbial agents for apple trees. Here we collected healthy apple trees from across the country to identify common and core bacterial taxa. We analyzed the endophytic bacterial communities in leaves and twigs and discovered that the twig bacterial communities were more conserved than those in the leaves, regardless of the origin of the sample. This finding indicates that specific endophytic taxa are consistently present in healthy apple trees and may be involved in vital functions such as disease prevention and growth. Furthermore, we compared the community metabolite pathway expression rates of these endophyte communities with those of E. amylovora infected apple trees and discovered that the endophyte communities in healthy apple trees not only had similar community structures but also similar metabolite pathway expression rates. Additionally, Pseudomonas and Methylobacterium-Methylorobrum were the dominant taxa in all healthy apple trees. Our findings provide valuable insights into the potential roles of endophytes in healthy apple trees and inform the development of strategies for enhancing apple growth and resilience. Moreover, the similarity in cluster structure and pathway analysis between healthy orchards was mutually reinforcing, demonstrating the power of microbiome analysis as a tool for identifying factors that contribute to plant health.

The volcanic aspect on determining Site of nuclear power plant in Indonesia: Gap analysis between standard and regulations

  • Widjanarko;Budi Santoso;Rismiyanto;Kurnia Anzhar;Joko Waluyo;Gustini H. Sayid;Khusnul Khotimah;Nicholas Bertony Saputra;Agus Teguh Pranoto;Hadi Suntoko;Siti Alimah;Sriyana;Roni Cahya Ciputra;Alfitri Meliana
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2875-2880
    • /
    • 2024
  • The development of nuclear power plants is in three phases. The first phase is a consideration before the decision on the NPP construction program is approved, the second phase is the preparatory work for making contracts and preparing for the construction of NPP after the NPP construction policy is approved, and the third phase is contracting, licensing and building the first NPP. As a volcanically active country, Indonesia contains over 130 active volcanoes that are part of the Pacific Ring of Fire. The volcanic aspect is one of the safety factors considered while deciding the location of an NPP. Research on the potential of natural external risks to the determination of nuclear power plants in Indonesia, including the volcanic aspect, has been conducted based on the safety reference or safety guide of the IAEA and the Nuclear Energy Regulatory Body (BAPETEN) Regulation. Due to technological advancements, safety needs have evolved so the existing Indonesia National Standard (SNI) must be updated to comply with BAPETEN regulations. The substance in SNI 18-2034-1990 relating to volcanic features seems less relevant in actual conditions, given that more complete and exact criteria for determining a site guarantee the safety and health of residents and surrounding the environment site. The study intends to conduct a gap analysis of volcanic issues in SNI and volcanic regulations. The method used is identification requirements for volcanic aspects in SNI 18-2034-1990 about Determining Site of Nuclear Reactor Guidance with BAPETEN Chairman Regulation (BCR) number 4 of 2018 about Nuclear Installation Site Evaluation Safety Provisions and BCR number 5 of 2015 about Evaluation of Nuclear Installation Sites for Volcanic Aspects, and analysis uses a qualitative method of inductive techniques. The outcome of this research applies to suggesting a revision of SNI number 18-2034-1990, especially the volcanic aspect.

Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panel Blast Resistance Behavior under Blast Loading Scenario (폭발하중 시나리오에 따른 2방향 비부착 프리스트레스트 콘크리트 패널부재의 폭발저항성능에 대한 실험적 거동 평가)

  • Choi, Ji-Hun;Choi, Seung-Jai;Cho, Chul-Min;Kim, Tae-Kyun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.6
    • /
    • pp.673-683
    • /
    • 2016
  • In recent years, frequent terror or military attack by explosion, impact, fire accidents have occurred. Particularly, World Trade Center collapse and US Department of Defense Pentagon attack on Sept. 11 of 2001. Also, nuclear power plant incident on Mar. 11 of 2011. These attacks and incidents were raised public concerns and anxiety of potential terrorist attacks on major infrastructures and structures. Therefore, the extreme loading researches were performed of prestressed concrete (PSC) member, which widely used for nuclear containment vessel and gas tank. In this paper, to evaluate the blast resistance capacity and its protective performance of bi-directional unbonded prestressed concrete member, blast tests were carried out on $1,400{\times}1,000{\times}300mm$ for reinforced concrete (RC), prestressed concrete without rebar (PSC), prestressed concrete with rebar (PSRC) specimens. The applied blast load was generated by the detonation of 55 lbs ANFO explosive charge at 1.0 m standoff distance. The data acquisitions not only included blast waves of incident pressure, reflected pressure, and impulse, but also included displacement, acceleration, and strains at steel, concrete, PS tendon. The results can be used as basic research references for related research areas, which include protective design and blast simulation under blast loading.