• Title/Summary/Keyword: Fire Modeling

Search Result 336, Processing Time 0.027 seconds

Measurement of the Device Properties of Photoelectric Smoke Detector for the Fire Modeling (화재모델링을 위한 광전식 연기감지기의 장치물성 측정)

  • Cho, Jae-Ho;Mun, Sun-Yeo;Hwang, Cheol-Hong;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.62-68
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially required for the reliable design of evacuation safety using the fire modeling. The main objective of the present study is to measure input information in order to predict the accurate activation time of photoelectric smoke detector adopted in fire dynamics simulator (FDS) recognized a representative fire model. To end this, the fire detector evaluator (FDE) which could be measured the device properties of detector was used, and the input information of Heskestad and Cleary's models was obtained for a spot-type photoelectric smoke detector. In addition, the activation times of smoke detector predicted using default values into FDS and measured values in the present study were quantitatively compared. As a result, the Heskestad model could result in an inaccurate the activation time of photoelectric smoke detector compared to the Cleary model. In addition, there was a distinct difference between the default values used into FDS and the measured values in terms of device properties of smoke detector, and thus the activation time also showed a significant difference.

Measurement of the Device Properties of a Ionization Smoke Detector to Improve Predictive Performance of the Fire Modeling (화재모델링 예측성능 개선을 위한 이온화식 연기감지기의 장치물성 측정)

  • Kim, Kyung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-34
    • /
    • 2013
  • The high prediction performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of PBD (Performance Based fire safety Design). The main objective of the present study is to measure input information in order to predict the accurate activation time of smoke detector into a Large Eddy Simulation (LES) fire model such as FDS (Fire Dynamics Simulator). To end this, FDE (Fire Detector Evaluator) which can measure the device properties of detector was developed, and the input information of Heskestad and Cleary's models was measured for a ionization smoke detector. In addition, the activation times of smoke detectors predicted using default values into FDS and measured values in the present study were systematically compared. As a result, the device properties of smoke detector examined in the present study showed a significant difference compared to the default values used into FDS, which resulted in the considerable difference of up to 15 minutes or more in terms of the activation time of smoke detector. The database (DB) on device properties of various smoke and heat detectors will be built to improve the reliability of PBD in future studies.

A Study on the Arson Fire Characteristics based on Domestic Fire Statistics and Computer Simulation (국내화재통계 및 컴퓨터 시뮬레이션에 의한 방화화재 특성에 관한 연구)

  • Choi, Jin;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2008
  • With the development of the Korean economy, the number of arson fire has been radically increased and become a huge problem and issue in Korea Society for last several decades. This study is to establish the fire life safety strategy regarding the arson fire through researching domestic fire statistics and performing the computer simulation based on fire scenarios with cutting edge techniques and methods for fire characteristics and fire dynamic. In addition, to design the fire life safety strategy depending on the arson fire pattern, the flow and characteristics of fire flames and smoke are analyzed by the computer modeling.

Modeling and simulation of large crowd evacuation in hazard-impacted environments

  • Datta, Songjukta;Behzadan, Amir H.
    • Advances in Computational Design
    • /
    • v.4 no.2
    • /
    • pp.91-118
    • /
    • 2019
  • Every year, many people are severely injured or lose their lives in accidents such as fire, chemical spill, public pandemonium, school shooting, and workplace violence. Research indicates that the fate of people in an emergency situation involving one or more hazards depends not only on the design of the space (e.g., residential building, industrial facility, shopping mall, sports stadium, school, concert hall) in which the incident occurs, but also on a host of other factors including but not limited to (a) occupants' characteristics, (b) level of familiarity with and cognition of the surroundings, and (c) effectiveness of hazard intervention systems. In this paper, we present EVAQ, a simulation framework for modeling large crowd evacuation by taking into account occupants' behaviors and interactions during an emergency. In particular, human's personal (i.e., age, gender, disability) and interpersonal (i.e., group behavior and interactions) attributes are parameterized in a hazard-impacted environment. In addition, different hazard types (e.g., fire, lone wolf attacker) and propagation patterns, as well as intervention schemes (simulating building repellent systems, firefighters, law enforcement) are modeled. Next, the application of EVAQ to crowd egress planning in an airport terminal under human attack, and a shopping mall in fire emergency are presented and results are discussed. Finally, a validation test is performed using real world data from a past building fire incident to assess the reliability and integrity of EVAQ in comparison with existing evacuation modeling tools.

Prediction of Sprinkler activation time using two-layer zonal model (Zone 모델을 이용한 스프링클러의 작동시간 예측)

  • 김명배;한용식;윤명오
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.15-18
    • /
    • 1996
  • A general description of sprinkler activation time in compartment-fire-generated smoke layers is made. For calculation of the time hot layer temperature is obtained from two-layer zonal model and time constant of sprinkler is measured. Upper-layer thickness at the instant of sprinkler activation is also presented with changes of opening area. The outputs of the present study provide inputs for the interaction modeling of sprinkler spray and compartment fire environment, which simulates fire suppression phenomena.

  • PDF

Identification of Fire Modeling Issues Based on an Analysis of Real Events from the OECD FIRE Database

  • Hermann, Dominik
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.342-348
    • /
    • 2017
  • Precursor analysis is widely used in the nuclear industry to judge the significance of events relevant to safety. However, in case of events that may damage equipment through effects that are not ordinary functional dependencies, the analysis may not always fully appreciate the potential for further evolution of the event. For fires, which are one class of such events, this paper discusses modelling challenges that need to be overcome when performing a probabilistic precursor analysis. The events used to analyze are selected from the Organisation for Economic Cooperation and Development (OECD) Fire Incidents Records Exchange (FIRE) Database.

Introduction to fire modeling for use in fire scene reconstruction (컴퓨터 화재 시뮬레이션을 이용한 화재조사)

  • Seok, Mi-Hye
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.10 no.1
    • /
    • pp.77-86
    • /
    • 2007
  • 컴퓨터 화재 모델링은 1960년대부터 연구 개발되어 왔지만, 화재조사 및 감식 분야에서는 미국의 NIST : National Institute of Standards and TechnologyNIST와 영국의 BRE : Building Research EstablishmentBRE를 중심으로 약 10여년 전부터 적용되기 시작했다. 처음 화재 모델링이 개발되었을 때에는 화재 자체의 물리적인 특성을 설명하는 데에만 사용되어 그 활용분야가 제한적이었으나, 방화공학적인 분석기법과 컴퓨터 기술의 발달로 요즈음에는 화재현장을 재현하고 예측하는데 많이 사용되고 있으며 앞으로 더 많은 활용이 예상된다. 따라서 본 글에서는 화재모델링을 이용한 시뮬레이션이 무엇인지를 배우고, 화재 조사에 적용된 구체적인 사례를 살펴봄으로써 컴퓨터 화재 시뮬레이션을 이용한 화재 조사에 대한 이해를 높이고자 한다.

  • PDF

A Study on the Arson Fire Char-acteristics based on Computer Simulation (컴퓨터 시뮬레이션에 의한 방화화재 특성에 관한 연구)

  • Choi, Jin
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2007.11a
    • /
    • pp.239-253
    • /
    • 2007
  • With the development of the Korean economy, the number of arson fire has been radically increased and become a huge problem and issue in Korea Society for last several decades. This study is to establish the fire life safety strategy regarding the arson fire through performing the computer simulation based on fire scenarios with researching domestic fire statistics and cutting edge techniques and methods for fire characteristics and fire dynamic. In addition, to design the fire life safety strategy depending on the arson fire pattern, the flow and characteristics of fire flames and smoke is analyzed by the computer modeling.

  • PDF