• Title/Summary/Keyword: Fire Exit

Search Result 142, Processing Time 0.023 seconds

A Study on the Improvement of Structure of Urban Transit Vehicle Considering Elevation of Fire Safety (화재안전성 향상을 고려한 도시철도 차량의 구조개선에 관한 연구)

  • Kim Kyu-Joong;Lee Seung-Yong;Lee Kuen-Oh
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.15-20
    • /
    • 2005
  • This is a comparative study where we compare simulation results with model examining the time and direction the fire spreads when it breaks out. Also there is vertical distribution of temperature in carriage where the fire spreads out. This study is about demonstrating how to establish smokeless system in urban vehicle, about its necessity, and about vehicle system restructuring, This study also makes an effort to find more advanced method for efficient fire safety in trains, In existing vehicles, in case of fire, the smoke can't go out when doors are closed and hence it spreads in whole train. Even though the method of using ventilation or exhaust established inside the carriage to throw smoke out is much better than the way of opening end doors in each carriage, this study is trying to do research on second way. Through simulation we see that in second case, even though not as good as the first one, smoke can exit through gates. Even though the first method is better, the second can also be uses to let fire out. We can know that in the first case as the smoke can exit out faster, it provides more safety for people. So this system provides better fire safety condition.

  • PDF

Evacuation Efficiency on School Auditorium Floor Layout (학교강당의 평면적 특징에 따른 대피효율에 관한 연구)

  • Kwun, Joon-Bum;Kim, Duk-Soo;Kim, Khil-Chae
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.24 no.2
    • /
    • pp.3-10
    • /
    • 2017
  • This study compared evacuation effectiveness between the conventional school auditorium plan and a suggested hypothetical plan that was generated by a mathematical model, which is commonly applied in the field of industrial engineering. Recent school buildings became much more complicated in floor planning due to new social needs and modern curriculum than the old days. Nevertheless, architect's approach to floor composition in terms of fire emergency evacuation planning, still has no relation to optimized effective but relies more on an conventional school planning. Therefore, since school buildings are much more likely to be exposed to any fire related events than any other building types, emergency exit effectiveness based on spatial composition has to be seriously evaluated with a scientific method. The algorithm, which acquires the number of persons in each spatial type(node) per floor and the minimum physical distance between spatial types(arc), can propose the most optimized spatial layout per floor regarding emergency evacuation event. Consequently, this study evaluated school's fire exit effectiveness focusing on auditorium area with the scientific tool and suggested the most reliable spatial layout regarding possibile emergency evacuation event.

Effective Evacuation based on Elementary School's Floor Layout (초등학교 층별 구성과 비상시 대피효율성의 관계)

  • Kwun, Joon-Bum;Kim, Duk-Su;Kim, Khil-Chae
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.23 no.3
    • /
    • pp.3-10
    • /
    • 2016
  • This study compared evacuation effectiveness between the conventional school floor plan and a suggested hypothetical floor plan that was generated by a mathematical model that is commonly applied in the field of industrial engineering. Recent school buildings became much more complicated in floor planning due to the new educational system and modern curriculum than the old days. Nevertheless, architect's approach to floor composition in terms of fire emergency evacuation planning, still has no relation to optimized effective but relies more on a conventional school planning. Therefore, since elementary school buildings are much more likely to be exposed to any fire related events than middle school or high-school, emergency exit effectiveness based on spatial composition has to be seriously evaluated with a scientific method. The algorithm, which acquires the number of persons in each spatial type (node) per floor and the minimum physical distance between spatial types (arc), can propose the most optimized spatial compositing per floor regarding emergency evacuation event. Consequently, this study evaluated elementary school's fire exit effectiveness with the scientific tool and suggested the most reliable spatial composition per floor regarding possibile emergency evacuation event.

Analysis of the Working Conditions of Fire Protection Systems in the Goyang Bus Terminal Building Fire (고양종합터미널화재 시 소방시설의 작동실태 분석)

  • Lee, Eui-Pyeong
    • Fire Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.95-107
    • /
    • 2018
  • This study analyzed the working conditions of the fire protection system in the Goyang Bus Terminal fire based on the fire investigation results. The results were as follows. First, extinguishing using an indoor fire hydrant was not attempted immediately after the fire burned the ceiling urethane foam. Second, a sprinkler alarm valve was turn off and did not work in the repair work space of the 1st basement. On the other hand, the sprinklers in the $2^{nd}$ basement, $1^{st}$ floor, $2^{nd}$ floor, and $3^{rd}$ floor worked and prevented the fire from moving to stories other than the $1^{st}$ basement. Third, although an exit light worked normally, it was not installed in the exit from the waiting room in the $2^{nd}$ floor to the bus stop. This resulted in many casualties. Fourth, although a fire receiver sent an electrical signal to the fan controller of the smoke control system, it was treated manually in the fan controller and the fan in the $2^{nd}$ floor did not work.

A Study on the Evacuation Planning in the Multiplex Cinema (멀티플렉스 영화관의 피난계획에 관한 연구)

  • So Eun-Tark;Song Byung-Ha
    • Korean Institute of Interior Design Journal
    • /
    • v.14 no.3 s.50
    • /
    • pp.147-155
    • /
    • 2005
  • As multiplex theaters are increasing rapidly in number, concerns over the evacuation process in case of fire emergency are also increasing. The study investigates the users' awareness and recognition of evacuation route by the method of questionnaire, and analyzes the users' behavior in choosing the route by the simulation program called Simulex. Among others, findings indicate a vast majority of the users are unaware of the proper route in the emergency, yet anticipate to evacuate by it, instead of the entry/exit route that they are familiar with. This aspect, however, can be useful to provide the proper route of evacuation for the users, if an appropriate information is given that the entry/exit route is also used as an emergency egress. The simulation shows heavy congestion at the closer evacuation route from the exit, and distinctly less traffic at the farther means of egress. Based on this natural phenomenon, it is suggested that the emergency stair should be nearby and aligned with the exit from auditorium. Although the present building regulation only requires a minimum dimension at each route, there is a need to widen the passageway that is likely to be recognized easily and subsequently overcrowded in case of fire emergency.

The visibility of emergency exit signs using phosphorescent materials (축광재료를 이용한 피난유도표지의 시인성에 관한 연구)

  • Hur, Man-Sung;Fujita, Akihiro
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.157-164
    • /
    • 2008
  • The optical characteristcs and visibility of emergence esit signs made with phosphorescent materials have been studied and compared with conventional signs. The phosphorescence of the materials meets standards as defineds by JIS, and achieved a level of brightness recognizable by the human eye. The visibility in the dard of the signs using the phosphorescent materials was shown to be higher than that of currently employed materials. It was confirmed that phosphorescent materials show excellent promise to improve the visibility of emergency exit signs.

  • PDF

An Experimental Study of Smoke Movement in Tunnel Fires with Natural Ventilation (터널화재시 자연환기에 의한 연기거동에 관한 실험적 연구)

  • 김충익;유홍선;이성룡;박현태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.3
    • /
    • pp.247-253
    • /
    • 2002
  • In this study, reduced-scale experiments were conducted to analyze smoke movement in tunnel fire with roof vent. The 1/20 scale experiments were carried out under the Froude scaling using gasoline pool fire ranging from 7.3 to 15.4 cm in diameter with total heat release rate from 1.0 to 8.46kw. In case of 1 m high vent, smoke front reached to the tunnel exit at about 16 sec delayed with ventilation. The delay time grew longer with the vent height. The temperature after the vent was lower than that without the vent. The exit temperature declined maximum of $20^{\circ}C$ after passing the vent. It was confirmed that the thickness of smoke layer was maintained uniformly under the 25% height of the tunnel through the visualized smoke now by a laser sheet and the digital camcorder.

An Experimental Study of Smoke Movement in Tunnel Fire with Natural and Forced Ventilations (자연 및 강제 배기시의 터널 내 연기거동에 관한 실험적 연구)

  • Hwang Cheol-Hong;Yoo Byung-Hun;Kum Sung-Min;Kim Jung-Yup;Shin Hyun-Joon;Lee Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.711-721
    • /
    • 2005
  • In order to design of emergency ventilation systems, the smoke movements in tunnel fire with natural and forced ventilation were investigated. Reduced-scale experiments were carried out under the Froude scaling with novel fire source consisting many wicks. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gases were measured at emergency exit point in the natural ventilation case. In forced ventilation, temperature profiles were measured with various flow rate to obtain critical velocity. The results showed that the interval of emergency exit having 225m was estimated reasonably through the measurements of temperature variation and poisonous gas in the natural ventilation. In the case of forced ventilation, the temperature distribution near fire source is remarkably different from that of natural ventilation. Also, the critical velocity to prevent upstream smoke flow has the range of 0.57m/s between 0.64m/s. Finally, it was also identified that although the increase of flow rate can suppress the backward flow of smoke to upstream direction, brings about the increase of flame intensity near stoichiometric fuel/air ratio.

A Study on the Model Experiment for Smoke Flow in Road Tunnel Fire (도로터널 화재발생시 연기유동에 관한 축소모형실험 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon;Kang, Se-Gu;Ahn, Kyung-Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.141-149
    • /
    • 2004
  • In this study, smoke movement in tunnel fire with natural and longitudinal ventilation systems has been investigated. Reduced-scale experiments were carried out under the Froude scaling using 14.55kW fire source with a wick and experimental data is obtained with 1/18 model tunnel test. Temperature profiles were measured under the ceiling and vertical direction along the center of the tunnel and poisonous gas was measured at emergency exit point. The results show that refuge time for 225m intervals of emergency exit in case of natural ventilation systems is 256 seconds and critical velocity for sufficient back-layer prevention is 2.8m/s for fire strength of 20MW.

  • PDF

A Study on the Development of Intelligent Guiding Exit Sign System (지능형 피난유도 시스템 개발에 관한 연구)

  • Kim, Yoo-Shik;Sug, Dong-Sub
    • Fire Science and Engineering
    • /
    • v.20 no.4 s.64
    • /
    • pp.131-134
    • /
    • 2006
  • As modern buildings grow to become diversified, toxic gases and smoke coupled with characteristics of space during a fire increase the risk of large-scaled disaster. It is now urgent to take measures for evacuation and escape directly linked to personal damage. Existing fixed one-way emergency exit light is not enough for efficient evacuation and rescue. Therefore, to ensure quicker escape and evacuation during a fire, two-way radio data system should be devised, which linked with fire detector, helps people in danger to escape quickly and is able to control by a central control system, and the system was found to enhance the efficiency of escape and contribute to safer escape.