• Title/Summary/Keyword: Finsler

Search Result 127, Processing Time 0.019 seconds

COMPARISON THEOREMS IN FINSLER GEOMETRY WITH WEIGHTED CURVATURE BOUNDS AND RELATED RESULTS

  • Wu, Bing-Ye
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.603-624
    • /
    • 2015
  • We first extend the notions of weighted curvatures, including the weighted flag curvature and the weighted Ricci curvature, for a Finsler manifold with given volume form. Then we establish some basic comparison theorems for Finsler manifolds with various weighted curvature bounds. As applications, we obtain some McKean type theorems for the first eigenvalue of Finsler manifolds, some results on weighted curvature and fundamental group for Finsler manifolds, as well as an estimation of Gromov simplicial norms for reversible Finsler manifolds.

ON THE CONSTRUCTION OF PSEUDO-FINSLER EIKONAL EQUATIONS

  • Cimdiker, Muradiye;Ekici, Cumali
    • Honam Mathematical Journal
    • /
    • v.42 no.1
    • /
    • pp.75-91
    • /
    • 2020
  • In this study, we have generalized pseudo-Finsler map by introducing the concept of semi-Riemannian map and have found pseudo-Finsler eikonal equations using pseudo-Finsler map. After that, we have obtained some sufficient theorems on pseudo-Finsler manifolds for the existence of solutions to the eikonal equation. At the same time, we have introduced a natural definition for the affine maps between pseudo-Finsler manifolds and have reached the affine solutions of them.

ON SOME CLASSES OF ℝ-COMPLEX HERMITIAN FINSLER SPACES

  • Aldea, Nicoleta;Campean, Gabriela
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.587-601
    • /
    • 2015
  • In this paper, we investigate the $\mathbb{R}$-complex Hermitian Finsler spaces, emphasizing the differences that separate them from the complex Finsler spaces. The tools used in this study are the Chern-Finsler and Berwald connections. By means of these connections, some classes of the $\mathbb{R}$-complex Hermitian Finsler spaces are defined, (e.g. weakly K$\ddot{a}$hler, K$\ddot{a}$hler, strongly K$\ddot{a}$hler). Here the notions of K$\ddot{a}$hler and strongly K$\ddot{a}$hler do not coincide, unlike the complex Finsler case. Also, some kinds of Berwald notions for such spaces are introduced. A special approach is devoted to obtain the equivalence conditions for an $\mathbb{R}$-complex Hermitian Finsler space to become a weakly Berwald or Berwald. Finally, we obtain the conditions under which an $\mathbb{R}$-complex Hermitian Finsler space with Randers metric is Berwald. We get some clear examples which illustrate the interest for this work.

On the History of the Birth of Finsler Geometry at Göttingen (괴팅겐에서 핀슬러 기하가 탄생한 역사)

  • Won, Dae Yeon
    • Journal for History of Mathematics
    • /
    • v.28 no.3
    • /
    • pp.133-149
    • /
    • 2015
  • Arrivals of Hilbert and Minkowski at $G\ddot{o}ttingen$ put mathematical science there in full flourish. They further extended its strong mathematical tradition of Gauss and Riemann. Though Riemann envisioned Finsler metric and gave an example of it in his inaugural lecture of 1854, Finsler geometry was officially named after Minkowski's academic grandson Finsler. His tool to generalize Riemannian geometry was the calculus of variations of which his advisor $Carath\acute{e}odory$ was a master. Another $G\ddot{o}ttingen$ graduate Busemann regraded Finsler geometry as a special case of geometry of metric spaces. He was a student of Courant who was a student of Hilbert. These figures all at $G\ddot{o}ttingen$ created and developed Finsler geometry in its early stages. In this paper, we investigate history of works on Finsler geometry contributed by these frontiers.

ISOMETRIC IMMERSIONS OF FINSLER MANIFOLDS

  • Lee, Nany;Won, Dae Yeon
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • For an isometric immersion $f:M{\rightarrow}{\bar{M}}$ of Finsler manifolds M into $\bar{M}$, we compare the intrinsic Chern connection on M and the induced connection on M: We find the conditions for them to coincide and generalize the equations of Gauss, Ricci and Codazzi to Finsler submanifolds. In case the ambient space is a locally Minkowskian Finsler manifold, we simplify the above equations.

  • PDF

HERMITIAN METRICS IN RIZZA MANIFILDS

  • Park, Hong-Suh;Lee, Il-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.2
    • /
    • pp.375-384
    • /
    • 1995
  • The almost Hermitian Finsler structure of a Rizza manifold is an almost Hermitian structure if a special condition satisfies. In this paper, the induced Finsler connection from Moor metric is define and the some properties of a Kaehlerian Finsler manifold with respect to the induced Finsler connection from Moor metric are investigated.

  • PDF

ORTHOGONALITY IN FINSLER C*-MODULES

  • Amyari, Maryam;Hassanniah, Reyhaneh
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.561-569
    • /
    • 2018
  • In this paper, we introduce some notions of orthogonality in the setting of Finsler $C^*$-modules and investigate their relations with the Birkhoff-James orthogonality. Suppose that ($E,{\rho}$) and ($F,{\rho}^{\prime}$) are Finsler modules over $C^*$-algebras $\mathcal{A}$ and $\mathcal{B}$, respectively, and ${\varphi}:{\mathcal{A}}{\rightarrow}{\mathcal{B}}$ is a *-homomorphism. A map ${\Psi}:E{\rightarrow}F$ is said to be a ${\varphi}$-morphism of Finsler modules if ${\rho}^{\prime}({\Psi}(x))={\varphi}({\rho}(x))$ and ${\Psi}(ax)={\varphi}(a){\Psi}(x)$ for all $a{\in}{\mathcal{A}}$ and all $x{\in}E$. We show that each ${\varphi}$-morphism of Finsler $C^*$-modules preserves the Birkhoff-James orthogonality and conversely, each surjective linear map between Finsler $C^*$-modules preserving the Birkhoff-James orthogonality is a ${\varphi}$-morphism under certain conditions. In fact, we state a version of Wigner's theorem in the framework of Finsler $C^*$-modules.

MYLLER CONFIGURATIONS IN FINSLER SPACES. APPLICATIONS TO THE STUDY OF SUBSPACES AND OF TORSE FORMING VECTOR FIELDS

  • Constantinescu, Oana
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1443-1482
    • /
    • 2008
  • In this paper we define a Myller configuration in a Finsler space and use some special configurations to obtain results about Finsler subspaces. Let $F^{n}$ = (M,F) be a Finsler space, with M a real, differentiable manifold of dimension n. Using the pull back bundle $({\pi}^{*}TM,\tilde{\pi},\widetilde{TM})$ of the tangent bundle $(TM,{\pi},M)$ by the mapping $\tilde{\pi}={\pi}/TM$ and the Cartan Finsler connection of a Finsler space, we obtain an orthonormal frame of sections of ${\pi}^{*}TM$ along a regular curve in $\widetilde{TM}$ and a system of invariants, geometrically associated to the Myller configuration. The fundamental equations are written in a very simple form and we prove a fundamental theorem. Important lines in a Finsler subspace are defined like special lines in a Myller configuration, geometrically associated to the subspace: auto parallels, lines of curvature, asymptotes. Torse forming vector fields with respect to the Cartan Finsler connection are characterized by means of the invariants of the Frenet frame of a versor field along a curve, and the new notion of torse forming vector fields in the sense of Myller is introduced. The particular cases of concurrence and parallelism in the sense of Myller are completely studied, for vector fields from the distribution $T^m$ of the Myller configuration and also from the normal distribution $T^p$.

INTRINSIC THEORY OF Cv-REDUCIBILITY IN FINSLER GEOMETRY

  • Salah Gomaa Elgendi;Amr Soleiman
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.187-199
    • /
    • 2024
  • In the present paper, following the pullback approach to Finsler geometry, we study intrinsically the Cv-reducible and generalized Cv-reducible Finsler spaces. Precisely, we introduce a coordinate-free formulation of these manifolds. Then, we prove that a Finsler manifold is Cv-reducible if and only if it is C-reducible and satisfies the 𝕋-condition. We study the generalized Cv-reducible Finsler manifold with a scalar π-form 𝔸. We show that a Finsler manifold (M, L) is generalized Cv-reducible with 𝔸 if and only if it is C-reducible and 𝕋 = 𝔸. Moreover, we prove that a Landsberg generalized Cv-reducible Finsler manifold with a scalar π-form 𝔸 is Berwaldian. Finally, we consider a special Cv-reducible Finsler manifold and conclude that a Finsler manifold is a special Cv-reducible if and only if it is special semi-C-reducible with vanishing 𝕋-tensor.