References
- M. Abate, G. Patrizio, Finsler Metrics-A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, Berlin, 1994.
- P.L. Antonelli, Handbook of Finsler Geometry 2, Kluwer Academic Publishers, Dordrecht, London, 2003.
- A. Bejancu, H.R. Farran, Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic Publishers, Dordrecht, London, 2000.
- J.K. Beem, Indefinite Finsler spaces and timelike spaces, Cna. J. Math. 22(5) (1999), 1035-1039. https://doi.org/10.4153/CJM-1970-119-7
- J.K. Beem, Characterizing Finsler spaces which are pseudo-Riemannian of constant curvature, Pasific J. Math. 64 (1976), 67-77. https://doi.org/10.2140/pjm.1976.64.67
- S.S. Chern, Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics 6, World Scientific, Singapore, 2005.
- A.E. Fischer, Riemannian map between Riemannian manifolds, Contemporary Math. 182 (1992), 342 pages.
- E. Garcio, D.N. Kupeli, Semi- Riemannian Maps and Their Applications, Kluwer Academic Publishers, London, 1999.
- M. Jahanandish, A geometric-based numerical solution of eikonal equation over a closed level curve, Iranian Journal of Science & Technology, Transaction A. 34(A1) (2010), 47-58.
- M.A. Javaloyes, B.L. Soares, Geodesics and jacobi fields of pseudo-Finsler manifolds, arXiv: 1401.6149v1, 2014.
- D.N. Kupeli, The eikonal equation of an indefinite metric, Acta Applicandae Mathematicae 40 (1995), 245-253. https://doi.org/10.1007/BF00992722
- M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press., Saikawa, Otsu, 1986.
- R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publish, Dordrecht, 1994.
- E. Minguzzi, The connections of pseudo-Finsler spaces, Int. J. Geom. Meth. Mod. Phys. 11, 2014.
- X. Mo, An Introduction to Finsler Geometry, Paking University Series in Mathematic, 1, 2006.
- M. Neagu, Jet Berwald-Riemann-Lagrange geometrization for affine maps between Finsler manifolds, Proceedings of the International Conference "Differential Geometry and Dynamical Systems" Burcharest, Romania, 2013.
- H. Rund, The Differential Geometry of Finsler Spaces,Grundiehr. Math. Wiss, 101, Springer, Berlin, 1959.
- Z. Shen, Lectures on Finsler Geometry, World Scientific Publishing Company, New Jersey, 2001.
- B.Y. Wu, Comparison theorems in Finsler geometry with weighted curvature bounds and related results, J. Korean Math. Soc. 52(3) (2013), 603-624 https://doi.org/10.4134/JKMS.2015.52.3.603