DOI QR코드

DOI QR Code

ON THE CONSTRUCTION OF PSEUDO-FINSLER EIKONAL EQUATIONS

  • Cimdiker, Muradiye (Department of Mathematics, Kirklareli University) ;
  • Ekici, Cumali (Department of Mathematics-Computer, Eskisehir Osmangazi University)
  • Received : 2019.04.02
  • Accepted : 2019.05.16
  • Published : 2020.03.25

Abstract

In this study, we have generalized pseudo-Finsler map by introducing the concept of semi-Riemannian map and have found pseudo-Finsler eikonal equations using pseudo-Finsler map. After that, we have obtained some sufficient theorems on pseudo-Finsler manifolds for the existence of solutions to the eikonal equation. At the same time, we have introduced a natural definition for the affine maps between pseudo-Finsler manifolds and have reached the affine solutions of them.

Keywords

References

  1. M. Abate, G. Patrizio, Finsler Metrics-A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, Berlin, 1994.
  2. P.L. Antonelli, Handbook of Finsler Geometry 2, Kluwer Academic Publishers, Dordrecht, London, 2003.
  3. A. Bejancu, H.R. Farran, Geometry of Pseudo-Finsler Submanifolds, Kluwer Academic Publishers, Dordrecht, London, 2000.
  4. J.K. Beem, Indefinite Finsler spaces and timelike spaces, Cna. J. Math. 22(5) (1999), 1035-1039. https://doi.org/10.4153/CJM-1970-119-7
  5. J.K. Beem, Characterizing Finsler spaces which are pseudo-Riemannian of constant curvature, Pasific J. Math. 64 (1976), 67-77. https://doi.org/10.2140/pjm.1976.64.67
  6. S.S. Chern, Z. Shen, Riemann-Finsler Geometry, Nankai Tracts in Mathematics 6, World Scientific, Singapore, 2005.
  7. A.E. Fischer, Riemannian map between Riemannian manifolds, Contemporary Math. 182 (1992), 342 pages.
  8. E. Garcio, D.N. Kupeli, Semi- Riemannian Maps and Their Applications, Kluwer Academic Publishers, London, 1999.
  9. M. Jahanandish, A geometric-based numerical solution of eikonal equation over a closed level curve, Iranian Journal of Science & Technology, Transaction A. 34(A1) (2010), 47-58.
  10. M.A. Javaloyes, B.L. Soares, Geodesics and jacobi fields of pseudo-Finsler manifolds, arXiv: 1401.6149v1, 2014.
  11. D.N. Kupeli, The eikonal equation of an indefinite metric, Acta Applicandae Mathematicae 40 (1995), 245-253. https://doi.org/10.1007/BF00992722
  12. M. Matsumoto, Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press., Saikawa, Otsu, 1986.
  13. R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publish, Dordrecht, 1994.
  14. E. Minguzzi, The connections of pseudo-Finsler spaces, Int. J. Geom. Meth. Mod. Phys. 11, 2014.
  15. X. Mo, An Introduction to Finsler Geometry, Paking University Series in Mathematic, 1, 2006.
  16. M. Neagu, Jet Berwald-Riemann-Lagrange geometrization for affine maps between Finsler manifolds, Proceedings of the International Conference "Differential Geometry and Dynamical Systems" Burcharest, Romania, 2013.
  17. H. Rund, The Differential Geometry of Finsler Spaces,Grundiehr. Math. Wiss, 101, Springer, Berlin, 1959.
  18. Z. Shen, Lectures on Finsler Geometry, World Scientific Publishing Company, New Jersey, 2001.
  19. B.Y. Wu, Comparison theorems in Finsler geometry with weighted curvature bounds and related results, J. Korean Math. Soc. 52(3) (2013), 603-624 https://doi.org/10.4134/JKMS.2015.52.3.603