• Title/Summary/Keyword: Finite-dimensional $U_q(sl_2)$-modules

Search Result 1, Processing Time 0.009 seconds

LEONARD PAIRS GENERATED FROM Uq(sl2)

  • ALQDERAT, AMANI;ALNAJJAR, HASAN
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.5_6
    • /
    • pp.1137-1150
    • /
    • 2022
  • Consider the quantum algebra Uq(sl2) over field 𝓕 (char(𝓕) = 0) with equitable generators x±1, y and z, where q is fixed nonzero, not root of unity scalar in 𝓕. Let V denote a finite dimensional irreducible module for this algebra. Let Λ ∈ End(V), and let {A1, A2, A3} = {x, y, z}. First we show that if Λ, A1 is a Leonard pair, then this Leonard pair have four types, and we show that for each type there exists a Leonard pair Λ, A1 in which Λ is a linear combination of 1, A2, A3, A2A3. Moreover, we use Λ to construct 𝚼 ∈ Uq(sl2) such that 𝚼, A-11 is a Leonard pair, and show that 𝚼 = I + A1Φ + A1ΨA1 where Φ and Ψ are linear combination of 1, A2, A3.